Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review

BackgroundArtificial intelligence (AI) applications are growing at an unprecedented pace in health care, including disease diagnosis, triage or screening, risk analysis, surgical operations, and so forth. Despite a great deal of research in the development and validation of h...

Full description

Bibliographic Details
Main Authors: Yin, Jiamin, Ngiam, Kee Yuan, Teo, Hock Hai
Format: Article
Language:English
Published: JMIR Publications 2021-04-01
Series:Journal of Medical Internet Research
Online Access:https://www.jmir.org/2021/4/e25759
id doaj-d09adc2d283545df83962d5a398fef9b
record_format Article
spelling doaj-d09adc2d283545df83962d5a398fef9b2021-04-22T14:01:55ZengJMIR PublicationsJournal of Medical Internet Research1438-88712021-04-01234e2575910.2196/25759Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic ReviewYin, JiaminNgiam, Kee YuanTeo, Hock Hai BackgroundArtificial intelligence (AI) applications are growing at an unprecedented pace in health care, including disease diagnosis, triage or screening, risk analysis, surgical operations, and so forth. Despite a great deal of research in the development and validation of health care AI, only few applications have been actually implemented at the frontlines of clinical practice. ObjectiveThe objective of this study was to systematically review AI applications that have been implemented in real-life clinical practice. MethodsWe conducted a literature search in PubMed, Embase, Cochrane Central, and CINAHL to identify relevant articles published between January 2010 and May 2020. We also hand searched premier computer science journals and conferences as well as registered clinical trials. Studies were included if they reported AI applications that had been implemented in real-world clinical settings. ResultsWe identified 51 relevant studies that reported the implementation and evaluation of AI applications in clinical practice, of which 13 adopted a randomized controlled trial design and eight adopted an experimental design. The AI applications targeted various clinical tasks, such as screening or triage (n=16), disease diagnosis (n=16), risk analysis (n=14), and treatment (n=7). The most commonly addressed diseases and conditions were sepsis (n=6), breast cancer (n=5), diabetic retinopathy (n=4), and polyp and adenoma (n=4). Regarding the evaluation outcomes, we found that 26 studies examined the performance of AI applications in clinical settings, 33 studies examined the effect of AI applications on clinician outcomes, 14 studies examined the effect on patient outcomes, and one study examined the economic impact associated with AI implementation. ConclusionsThis review indicates that research on the clinical implementation of AI applications is still at an early stage despite the great potential. More research needs to assess the benefits and challenges associated with clinical AI applications through a more rigorous methodology.https://www.jmir.org/2021/4/e25759
collection DOAJ
language English
format Article
sources DOAJ
author Yin, Jiamin
Ngiam, Kee Yuan
Teo, Hock Hai
spellingShingle Yin, Jiamin
Ngiam, Kee Yuan
Teo, Hock Hai
Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review
Journal of Medical Internet Research
author_facet Yin, Jiamin
Ngiam, Kee Yuan
Teo, Hock Hai
author_sort Yin, Jiamin
title Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review
title_short Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review
title_full Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review
title_fullStr Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review
title_full_unstemmed Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review
title_sort role of artificial intelligence applications in real-life clinical practice: systematic review
publisher JMIR Publications
series Journal of Medical Internet Research
issn 1438-8871
publishDate 2021-04-01
description BackgroundArtificial intelligence (AI) applications are growing at an unprecedented pace in health care, including disease diagnosis, triage or screening, risk analysis, surgical operations, and so forth. Despite a great deal of research in the development and validation of health care AI, only few applications have been actually implemented at the frontlines of clinical practice. ObjectiveThe objective of this study was to systematically review AI applications that have been implemented in real-life clinical practice. MethodsWe conducted a literature search in PubMed, Embase, Cochrane Central, and CINAHL to identify relevant articles published between January 2010 and May 2020. We also hand searched premier computer science journals and conferences as well as registered clinical trials. Studies were included if they reported AI applications that had been implemented in real-world clinical settings. ResultsWe identified 51 relevant studies that reported the implementation and evaluation of AI applications in clinical practice, of which 13 adopted a randomized controlled trial design and eight adopted an experimental design. The AI applications targeted various clinical tasks, such as screening or triage (n=16), disease diagnosis (n=16), risk analysis (n=14), and treatment (n=7). The most commonly addressed diseases and conditions were sepsis (n=6), breast cancer (n=5), diabetic retinopathy (n=4), and polyp and adenoma (n=4). Regarding the evaluation outcomes, we found that 26 studies examined the performance of AI applications in clinical settings, 33 studies examined the effect of AI applications on clinician outcomes, 14 studies examined the effect on patient outcomes, and one study examined the economic impact associated with AI implementation. ConclusionsThis review indicates that research on the clinical implementation of AI applications is still at an early stage despite the great potential. More research needs to assess the benefits and challenges associated with clinical AI applications through a more rigorous methodology.
url https://www.jmir.org/2021/4/e25759
work_keys_str_mv AT yinjiamin roleofartificialintelligenceapplicationsinreallifeclinicalpracticesystematicreview
AT ngiamkeeyuan roleofartificialintelligenceapplicationsinreallifeclinicalpracticesystematicreview
AT teohockhai roleofartificialintelligenceapplicationsinreallifeclinicalpracticesystematicreview
_version_ 1721514176955809792