NetKet: A machine learning toolkit for many-body quantum systems
We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefuncti...
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-07-01
|
Series: | SoftwareX |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352711019300974 |
id |
doaj-d09a9ec97b6d44d190c7e5f50486a66c |
---|---|
record_format |
Article |
spelling |
doaj-d09a9ec97b6d44d190c7e5f50486a66c2020-11-25T02:32:45ZengElsevierSoftwareX2352-71102019-07-0110NetKet: A machine learning toolkit for many-body quantum systemsGiuseppe Carleo0Kenny Choo1Damian Hofmann2James E.T. Smith3Tom Westerhout4Fabien Alet5Emily J. Davis6Stavros Efthymiou7Ivan Glasser8Sheng-Hsuan Lin9Marta Mauri10Guglielmo Mazzola11Christian B. Mendl12Evert van Nieuwenburg13Ossian O’Reilly14Hugo Théveniaut15Giacomo Torlai16Filippo Vicentini17Alexander Wietek18Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USA; Corresponding author.Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, SwitzerlandMax Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, GermanyDepartment of Chemistry, University of Colorado Boulder, Boulder, CO 80302, USAInstitute for Molecules and Materials, Radboud University, NL-6525 AJ Nijmegen, The NetherlandsLaboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, FranceDepartment of Physics, Stanford University, Stanford, CA 94305, USAMax-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, GermanyMax-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, GermanyDepartment of Physics, T42, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München, GermanyCenter for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USA; Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, ItalyTheoretische Physik, ETH Zürich, 8093 Zürich, SwitzerlandTechnische Universität Dresden, Institute of Scientific Computing, Zellescher Weg 12-14, 01069 Dresden, GermanyInstitute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USASouthern California Earthquake Center, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA 90089, USALaboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, FranceCenter for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USAUniversité de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013, Paris, FranceCenter for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USAWe introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics. Keywords: Neural-network quantum states, Variational Monte Carlo, Quantum state tomography, Machine learning, Supervised learninghttp://www.sciencedirect.com/science/article/pii/S2352711019300974 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Giuseppe Carleo Kenny Choo Damian Hofmann James E.T. Smith Tom Westerhout Fabien Alet Emily J. Davis Stavros Efthymiou Ivan Glasser Sheng-Hsuan Lin Marta Mauri Guglielmo Mazzola Christian B. Mendl Evert van Nieuwenburg Ossian O’Reilly Hugo Théveniaut Giacomo Torlai Filippo Vicentini Alexander Wietek |
spellingShingle |
Giuseppe Carleo Kenny Choo Damian Hofmann James E.T. Smith Tom Westerhout Fabien Alet Emily J. Davis Stavros Efthymiou Ivan Glasser Sheng-Hsuan Lin Marta Mauri Guglielmo Mazzola Christian B. Mendl Evert van Nieuwenburg Ossian O’Reilly Hugo Théveniaut Giacomo Torlai Filippo Vicentini Alexander Wietek NetKet: A machine learning toolkit for many-body quantum systems SoftwareX |
author_facet |
Giuseppe Carleo Kenny Choo Damian Hofmann James E.T. Smith Tom Westerhout Fabien Alet Emily J. Davis Stavros Efthymiou Ivan Glasser Sheng-Hsuan Lin Marta Mauri Guglielmo Mazzola Christian B. Mendl Evert van Nieuwenburg Ossian O’Reilly Hugo Théveniaut Giacomo Torlai Filippo Vicentini Alexander Wietek |
author_sort |
Giuseppe Carleo |
title |
NetKet: A machine learning toolkit for many-body quantum systems |
title_short |
NetKet: A machine learning toolkit for many-body quantum systems |
title_full |
NetKet: A machine learning toolkit for many-body quantum systems |
title_fullStr |
NetKet: A machine learning toolkit for many-body quantum systems |
title_full_unstemmed |
NetKet: A machine learning toolkit for many-body quantum systems |
title_sort |
netket: a machine learning toolkit for many-body quantum systems |
publisher |
Elsevier |
series |
SoftwareX |
issn |
2352-7110 |
publishDate |
2019-07-01 |
description |
We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics. Keywords: Neural-network quantum states, Variational Monte Carlo, Quantum state tomography, Machine learning, Supervised learning |
url |
http://www.sciencedirect.com/science/article/pii/S2352711019300974 |
work_keys_str_mv |
AT giuseppecarleo netketamachinelearningtoolkitformanybodyquantumsystems AT kennychoo netketamachinelearningtoolkitformanybodyquantumsystems AT damianhofmann netketamachinelearningtoolkitformanybodyquantumsystems AT jamesetsmith netketamachinelearningtoolkitformanybodyquantumsystems AT tomwesterhout netketamachinelearningtoolkitformanybodyquantumsystems AT fabienalet netketamachinelearningtoolkitformanybodyquantumsystems AT emilyjdavis netketamachinelearningtoolkitformanybodyquantumsystems AT stavrosefthymiou netketamachinelearningtoolkitformanybodyquantumsystems AT ivanglasser netketamachinelearningtoolkitformanybodyquantumsystems AT shenghsuanlin netketamachinelearningtoolkitformanybodyquantumsystems AT martamauri netketamachinelearningtoolkitformanybodyquantumsystems AT guglielmomazzola netketamachinelearningtoolkitformanybodyquantumsystems AT christianbmendl netketamachinelearningtoolkitformanybodyquantumsystems AT evertvannieuwenburg netketamachinelearningtoolkitformanybodyquantumsystems AT ossianoreilly netketamachinelearningtoolkitformanybodyquantumsystems AT hugotheveniaut netketamachinelearningtoolkitformanybodyquantumsystems AT giacomotorlai netketamachinelearningtoolkitformanybodyquantumsystems AT filippovicentini netketamachinelearningtoolkitformanybodyquantumsystems AT alexanderwietek netketamachinelearningtoolkitformanybodyquantumsystems |
_version_ |
1724817934223671296 |