NetKet: A machine learning toolkit for many-body quantum systems

We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefuncti...

Full description

Bibliographic Details
Main Authors: Giuseppe Carleo, Kenny Choo, Damian Hofmann, James E.T. Smith, Tom Westerhout, Fabien Alet, Emily J. Davis, Stavros Efthymiou, Ivan Glasser, Sheng-Hsuan Lin, Marta Mauri, Guglielmo Mazzola, Christian B. Mendl, Evert van Nieuwenburg, Ossian O’Reilly, Hugo Théveniaut, Giacomo Torlai, Filippo Vicentini, Alexander Wietek
Format: Article
Language:English
Published: Elsevier 2019-07-01
Series:SoftwareX
Online Access:http://www.sciencedirect.com/science/article/pii/S2352711019300974
id doaj-d09a9ec97b6d44d190c7e5f50486a66c
record_format Article
spelling doaj-d09a9ec97b6d44d190c7e5f50486a66c2020-11-25T02:32:45ZengElsevierSoftwareX2352-71102019-07-0110NetKet: A machine learning toolkit for many-body quantum systemsGiuseppe Carleo0Kenny Choo1Damian Hofmann2James E.T. Smith3Tom Westerhout4Fabien Alet5Emily J. Davis6Stavros Efthymiou7Ivan Glasser8Sheng-Hsuan Lin9Marta Mauri10Guglielmo Mazzola11Christian B. Mendl12Evert van Nieuwenburg13Ossian O’Reilly14Hugo Théveniaut15Giacomo Torlai16Filippo Vicentini17Alexander Wietek18Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USA; Corresponding author.Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, SwitzerlandMax Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, GermanyDepartment of Chemistry, University of Colorado Boulder, Boulder, CO 80302, USAInstitute for Molecules and Materials, Radboud University, NL-6525 AJ Nijmegen, The NetherlandsLaboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, FranceDepartment of Physics, Stanford University, Stanford, CA 94305, USAMax-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, GermanyMax-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, GermanyDepartment of Physics, T42, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München, GermanyCenter for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USA; Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, ItalyTheoretische Physik, ETH Zürich, 8093 Zürich, SwitzerlandTechnische Universität Dresden, Institute of Scientific Computing, Zellescher Weg 12-14, 01069 Dresden, GermanyInstitute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USASouthern California Earthquake Center, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA 90089, USALaboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, FranceCenter for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USAUniversité de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013, Paris, FranceCenter for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USAWe introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics. Keywords: Neural-network quantum states, Variational Monte Carlo, Quantum state tomography, Machine learning, Supervised learninghttp://www.sciencedirect.com/science/article/pii/S2352711019300974
collection DOAJ
language English
format Article
sources DOAJ
author Giuseppe Carleo
Kenny Choo
Damian Hofmann
James E.T. Smith
Tom Westerhout
Fabien Alet
Emily J. Davis
Stavros Efthymiou
Ivan Glasser
Sheng-Hsuan Lin
Marta Mauri
Guglielmo Mazzola
Christian B. Mendl
Evert van Nieuwenburg
Ossian O’Reilly
Hugo Théveniaut
Giacomo Torlai
Filippo Vicentini
Alexander Wietek
spellingShingle Giuseppe Carleo
Kenny Choo
Damian Hofmann
James E.T. Smith
Tom Westerhout
Fabien Alet
Emily J. Davis
Stavros Efthymiou
Ivan Glasser
Sheng-Hsuan Lin
Marta Mauri
Guglielmo Mazzola
Christian B. Mendl
Evert van Nieuwenburg
Ossian O’Reilly
Hugo Théveniaut
Giacomo Torlai
Filippo Vicentini
Alexander Wietek
NetKet: A machine learning toolkit for many-body quantum systems
SoftwareX
author_facet Giuseppe Carleo
Kenny Choo
Damian Hofmann
James E.T. Smith
Tom Westerhout
Fabien Alet
Emily J. Davis
Stavros Efthymiou
Ivan Glasser
Sheng-Hsuan Lin
Marta Mauri
Guglielmo Mazzola
Christian B. Mendl
Evert van Nieuwenburg
Ossian O’Reilly
Hugo Théveniaut
Giacomo Torlai
Filippo Vicentini
Alexander Wietek
author_sort Giuseppe Carleo
title NetKet: A machine learning toolkit for many-body quantum systems
title_short NetKet: A machine learning toolkit for many-body quantum systems
title_full NetKet: A machine learning toolkit for many-body quantum systems
title_fullStr NetKet: A machine learning toolkit for many-body quantum systems
title_full_unstemmed NetKet: A machine learning toolkit for many-body quantum systems
title_sort netket: a machine learning toolkit for many-body quantum systems
publisher Elsevier
series SoftwareX
issn 2352-7110
publishDate 2019-07-01
description We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics. Keywords: Neural-network quantum states, Variational Monte Carlo, Quantum state tomography, Machine learning, Supervised learning
url http://www.sciencedirect.com/science/article/pii/S2352711019300974
work_keys_str_mv AT giuseppecarleo netketamachinelearningtoolkitformanybodyquantumsystems
AT kennychoo netketamachinelearningtoolkitformanybodyquantumsystems
AT damianhofmann netketamachinelearningtoolkitformanybodyquantumsystems
AT jamesetsmith netketamachinelearningtoolkitformanybodyquantumsystems
AT tomwesterhout netketamachinelearningtoolkitformanybodyquantumsystems
AT fabienalet netketamachinelearningtoolkitformanybodyquantumsystems
AT emilyjdavis netketamachinelearningtoolkitformanybodyquantumsystems
AT stavrosefthymiou netketamachinelearningtoolkitformanybodyquantumsystems
AT ivanglasser netketamachinelearningtoolkitformanybodyquantumsystems
AT shenghsuanlin netketamachinelearningtoolkitformanybodyquantumsystems
AT martamauri netketamachinelearningtoolkitformanybodyquantumsystems
AT guglielmomazzola netketamachinelearningtoolkitformanybodyquantumsystems
AT christianbmendl netketamachinelearningtoolkitformanybodyquantumsystems
AT evertvannieuwenburg netketamachinelearningtoolkitformanybodyquantumsystems
AT ossianoreilly netketamachinelearningtoolkitformanybodyquantumsystems
AT hugotheveniaut netketamachinelearningtoolkitformanybodyquantumsystems
AT giacomotorlai netketamachinelearningtoolkitformanybodyquantumsystems
AT filippovicentini netketamachinelearningtoolkitformanybodyquantumsystems
AT alexanderwietek netketamachinelearningtoolkitformanybodyquantumsystems
_version_ 1724817934223671296