Interpretation of microbiota-based diagnostics by explaining individual classifier decisions
Abstract Background The human microbiota is associated with various disease states and holds a great promise for non-invasive diagnostics. However, microbiota data is challenging for traditional diagnostic approaches: It is high-dimensional, sparse and comprises of high inter-personal variation. Sta...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2017-10-01
|
Series: | BMC Bioinformatics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12859-017-1843-1 |