Asymptotic Formula for the Moments of Takagi Function

Takagi function is a simple example of a continuous but nowhere differentiable function. It is defined by T(x) = ∞ ᢘ k=0 2−nρ(2nx), where ρ(x) = min k∈Z |x − k|. The moments of Takagi function are defined as Mn = ᝈ 1 0  xnT(x) dx. The main result of this paper is the following: Mn = lnn − Γ᝘(1) − lnπ n...

Full description

Bibliographic Details
Main Author: E. A. Timofeev
Format: Article
Language:English
Published: Yaroslavl State University 2016-02-01
Series:Modelirovanie i Analiz Informacionnyh Sistem
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/302
id doaj-d099007aa89a4831b27dc88fb853bb44
record_format Article
spelling doaj-d099007aa89a4831b27dc88fb853bb442021-07-29T08:15:21ZengYaroslavl State UniversityModelirovanie i Analiz Informacionnyh Sistem1818-10152313-54172016-02-0123151110.18255/1818-1015-2016-1-5-11278Asymptotic Formula for the Moments of Takagi FunctionE. A. Timofeev0Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, RussiaTakagi function is a simple example of a continuous but nowhere differentiable function. It is defined by T(x) = ∞ ᢘ k=0 2−nρ(2nx), where ρ(x) = min k∈Z |x − k|. The moments of Takagi function are defined as Mn = ᝈ 1 0  xnT(x) dx. The main result of this paper is the following: Mn = lnn − Γ᝘(1) − lnπ n2 ln 2  + 1 2n2 + 2 n2 ln 2 φ(n) + O(n−2.99), where φ(x) = ᝨ kᡘ=0 Γ ᝈ2πik  ln 2 ᣸ ζ ᡸ2πik ln 2  ᡸ x−2lπni2k .https://www.mais-journal.ru/jour/article/view/302momentsself-similartakagi functionsingularmellin transformasymptotic
collection DOAJ
language English
format Article
sources DOAJ
author E. A. Timofeev
spellingShingle E. A. Timofeev
Asymptotic Formula for the Moments of Takagi Function
Modelirovanie i Analiz Informacionnyh Sistem
moments
self-similar
takagi function
singular
mellin transform
asymptotic
author_facet E. A. Timofeev
author_sort E. A. Timofeev
title Asymptotic Formula for the Moments of Takagi Function
title_short Asymptotic Formula for the Moments of Takagi Function
title_full Asymptotic Formula for the Moments of Takagi Function
title_fullStr Asymptotic Formula for the Moments of Takagi Function
title_full_unstemmed Asymptotic Formula for the Moments of Takagi Function
title_sort asymptotic formula for the moments of takagi function
publisher Yaroslavl State University
series Modelirovanie i Analiz Informacionnyh Sistem
issn 1818-1015
2313-5417
publishDate 2016-02-01
description Takagi function is a simple example of a continuous but nowhere differentiable function. It is defined by T(x) = ∞ ᢘ k=0 2−nρ(2nx), where ρ(x) = min k∈Z |x − k|. The moments of Takagi function are defined as Mn = ᝈ 1 0  xnT(x) dx. The main result of this paper is the following: Mn = lnn − Γ᝘(1) − lnπ n2 ln 2  + 1 2n2 + 2 n2 ln 2 φ(n) + O(n−2.99), where φ(x) = ᝨ kᡘ=0 Γ ᝈ2πik  ln 2 ᣸ ζ ᡸ2πik ln 2  ᡸ x−2lπni2k .
topic moments
self-similar
takagi function
singular
mellin transform
asymptotic
url https://www.mais-journal.ru/jour/article/view/302
work_keys_str_mv AT eatimofeev asymptoticformulaforthemomentsoftakagifunction
_version_ 1721256512805928960