INTRA-URBAN MOVEMENT FLOW ESTIMATION USING LOCATION BASED SOCIAL NETWORKING DATA

In recent years, there has been a rapid growth of location-based social networking services, such as Foursquare and Facebook, which have attracted an increasing number of users and greatly enriched their urban experience. Location-based social network data, as a new travel demand data source, seems...

Full description

Bibliographic Details
Main Authors: A. Kheiri, F. Karimipour, M. Forghani
Format: Article
Language:English
Published: Copernicus Publications 2015-12-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W5/781/2015/isprsarchives-XL-1-W5-781-2015.pdf
Description
Summary:In recent years, there has been a rapid growth of location-based social networking services, such as Foursquare and Facebook, which have attracted an increasing number of users and greatly enriched their urban experience. Location-based social network data, as a new travel demand data source, seems to be an alternative or complement to survey data in the study of mobility behavior and activity analysis because of its relatively high access and low cost. In this paper, three OD estimation models have been utilized in order to investigate their relative performance when using Location-Based Social Networking (LBSN) data. For this, the Foursquare LBSN data was used to analyze the intra-urban movement behavioral patterns for the study area, Manhattan, the most densely populated of the five boroughs of New York city. The outputs of models are evaluated using real observations based on different criterions including distance distribution, destination travel constraints. The results demonstrate the promising potential of using LBSN data for urban travel demand analysis and monitoring.
ISSN:1682-1750
2194-9034