Polyol Modification of PEDOT: PSS as Hole Transport Material Affects the Performance and Stability of Calcium Titanate (CaTiO3) Solar Cell and UV Photodetector

This report a novel and straightforward architecture of CaTiO3based solar cells with optimized hole transport material (HTM) properties. The perovskite CaTiO3 particle was prepared via the solution process using different CaCO3/TiO2 ratios. The design of CaTiO3-based solar cell follows the inverted...

Full description

Bibliographic Details
Main Authors: Ernawati Lusi, Abat Amelenan Torimtubun Alfonsina, Arofai Teguh, Yani Adhya, Huda Thorikul, Agung Wahyuono Ruri
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Subjects:
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/50/e3sconf_icorer2020_00023.pdf
Description
Summary:This report a novel and straightforward architecture of CaTiO3based solar cells with optimized hole transport material (HTM) properties. The perovskite CaTiO3 particle was prepared via the solution process using different CaCO3/TiO2 ratios. The design of CaTiO3-based solar cell follows the inverted architecture, in which poly (4-styrene sulfonate)-doped poly (3, 4-ethylenedioxy-thiophene (PEDOT:PSS) and PCBM-C70 were used as HTM and electron transport layer (ETL), respectively. Charge mobility of HTM was modified and improved by using either ethylene glycol (EG) or diethylene glycol (DEG). The optimum condition of CaTiO3-based solar cell was obtained using CaCO3/TiO2 ratio of (1:7) annealed at 900 °C and 44.4 % (v/v) DEG-modified PEDOT/PSS. The conversion efficiency of 3.1 % with a stable solar cell performance up to 72 h under the ambient condition without encapsulation was achieved.
ISSN:2267-1242