Highly Stable PEDOT:PSS Coating on Gold Microelectrodes with Improved Charge Injection Capacity for Chronic Neural Stimulation
This study introduces two new processes that highly enable PEDOT:PSS (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)) as stable coating material for chronic neural stimulation. In first process, strong mechanical bonding between PEDOT:PSS coating and gold electrodes is achieved by creating...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-08-01
|
Series: | Proceedings |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3900/1/4/492 |
Summary: | This study introduces two new processes that highly enable PEDOT:PSS (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)) as stable coating material for chronic neural stimulation. In first process, strong mechanical bonding between PEDOT:PSS coating and gold electrodes is achieved by creating rough porous surface with partial iodine etching. PEDOT:PSS coating on iodine etched gold electrode shows 100% stability under strong ultrasonic treatment. The second process represents electrochemical modification of PEDOT:PSS coating by cyclic voltammetry method in Ringer’s solution. This process reduces electrode polarization 33% during stimulation. Therefore, charge injection capacity increases that ensures safe stimulation. A combination of both processes facilitates the use of PEDOT:PSS coating for successful chronic neural recording and stimulation. |
---|---|
ISSN: | 2504-3900 |