Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses.
In plants, CuZn superoxide dismutase (CuZnSOD, EC l.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and catalase (CAT, EC l.11.1.6) are important scavengers of reactive oxygen species (ROS) to protect the cell from damage. In the present study, we isolated three homologous genes (GhSOD1, GhAPX1,...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3545958?pdf=render |
id |
doaj-d03f221381cd454bb9e4f6e7e085618f |
---|---|
record_format |
Article |
spelling |
doaj-d03f221381cd454bb9e4f6e7e085618f2020-11-24T20:50:00ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0181e5400210.1371/journal.pone.0054002Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses.Xiaoli LuoJiahe WuYuanbao LiZhirun NanXing GuoYixue WangAnhong ZhangZhian WangGuixian XiaYingchuan TianIn plants, CuZn superoxide dismutase (CuZnSOD, EC l.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and catalase (CAT, EC l.11.1.6) are important scavengers of reactive oxygen species (ROS) to protect the cell from damage. In the present study, we isolated three homologous genes (GhSOD1, GhAPX1, and GhCAT1) from Gossypium hirsutum. Overexpressing cassettes containing chimeric GhSOD1, GhAPX1, or GhCAT1 were introduced into cotton plants by Agrobacterium transformation, and overexpressed products of these genes were transported into the chloroplasts by transit peptide, as expected. The five types of transgenic cotton plants that overexpressed GhSOD1, GhAPX1, GhCAT1, GhSOD1 and GhAPX1 stack (SAT), and GhSOD1 and GhCAT1 stack (SCT) were developed. Analyses in the greenhouse showed that the transgenic plants had higher tolerance to methyl viologen (MV) and salinity than WT plants. Interestingly, SCT plants suffered no damage under stress conditions. Based on analyses of enzyme activities, electrolyte leakage, chlorophyll content, photochemical yield (Fv/Fm), and biomass accumulation under stresses, the SCT plants that simultaneously overexpressed GhSOD1 and GhCAT1 appeared to benefit from synergistic effects of two genes and exhibited the highest tolerance to MV and salt stress among the transgenic lines, while the SAT plants simultaneously overexpressing GhSOD1 and GhAPX1 did not. In addition, transgenic plants overexpressing antioxidant enzymes in their chloroplasts had higher tolerance to salt stress than those expressing the genes in their cytoplasms, although overall enzyme activities were almost the same. Therefore, the synergistic effects of GhSOD1 and GhCAT1 in chloroplasts provide a new strategy for enhancing stress tolerance to avoid yield loss.http://europepmc.org/articles/PMC3545958?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xiaoli Luo Jiahe Wu Yuanbao Li Zhirun Nan Xing Guo Yixue Wang Anhong Zhang Zhian Wang Guixian Xia Yingchuan Tian |
spellingShingle |
Xiaoli Luo Jiahe Wu Yuanbao Li Zhirun Nan Xing Guo Yixue Wang Anhong Zhang Zhian Wang Guixian Xia Yingchuan Tian Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. PLoS ONE |
author_facet |
Xiaoli Luo Jiahe Wu Yuanbao Li Zhirun Nan Xing Guo Yixue Wang Anhong Zhang Zhian Wang Guixian Xia Yingchuan Tian |
author_sort |
Xiaoli Luo |
title |
Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. |
title_short |
Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. |
title_full |
Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. |
title_fullStr |
Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. |
title_full_unstemmed |
Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. |
title_sort |
synergistic effects of ghsod1 and ghcat1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2013-01-01 |
description |
In plants, CuZn superoxide dismutase (CuZnSOD, EC l.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and catalase (CAT, EC l.11.1.6) are important scavengers of reactive oxygen species (ROS) to protect the cell from damage. In the present study, we isolated three homologous genes (GhSOD1, GhAPX1, and GhCAT1) from Gossypium hirsutum. Overexpressing cassettes containing chimeric GhSOD1, GhAPX1, or GhCAT1 were introduced into cotton plants by Agrobacterium transformation, and overexpressed products of these genes were transported into the chloroplasts by transit peptide, as expected. The five types of transgenic cotton plants that overexpressed GhSOD1, GhAPX1, GhCAT1, GhSOD1 and GhAPX1 stack (SAT), and GhSOD1 and GhCAT1 stack (SCT) were developed. Analyses in the greenhouse showed that the transgenic plants had higher tolerance to methyl viologen (MV) and salinity than WT plants. Interestingly, SCT plants suffered no damage under stress conditions. Based on analyses of enzyme activities, electrolyte leakage, chlorophyll content, photochemical yield (Fv/Fm), and biomass accumulation under stresses, the SCT plants that simultaneously overexpressed GhSOD1 and GhCAT1 appeared to benefit from synergistic effects of two genes and exhibited the highest tolerance to MV and salt stress among the transgenic lines, while the SAT plants simultaneously overexpressing GhSOD1 and GhAPX1 did not. In addition, transgenic plants overexpressing antioxidant enzymes in their chloroplasts had higher tolerance to salt stress than those expressing the genes in their cytoplasms, although overall enzyme activities were almost the same. Therefore, the synergistic effects of GhSOD1 and GhCAT1 in chloroplasts provide a new strategy for enhancing stress tolerance to avoid yield loss. |
url |
http://europepmc.org/articles/PMC3545958?pdf=render |
work_keys_str_mv |
AT xiaoliluo synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT jiahewu synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT yuanbaoli synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT zhirunnan synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT xingguo synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT yixuewang synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT anhongzhang synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT zhianwang synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT guixianxia synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT yingchuantian synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses |
_version_ |
1716805120799277056 |