Analytical Solutions of Fractional Klein-Gordon and Gas Dynamics Equations, via the (<i>G</i><sup>′</sup>/<i>G</i>)-Expansion Method

In this article, the <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <msup> <mi>G</mi> <msup> <mrow></mrow> <mo>&#8242;</mo> </msup> </msup>...

Full description

Bibliographic Details
Main Authors: Hassan Khan, Shoaib Barak, Poom Kumam, Muhammad Arif
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/4/566
Description
Summary:In this article, the <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <msup> <mi>G</mi> <msup> <mrow></mrow> <mo>&#8242;</mo> </msup> </msup> <mo>/</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>-expansion method is used for the analytical solutions of fractional-order Klein-Gordon and Gas Dynamics equations. The fractional derivatives are defined in the term of Jumarie&#8217;s operator. The proposed method is based on certain variable transformation, which transforms the given problems into ordinary differential equations. The solution of resultant ordinary differential equation can be expressed by a polynomial in <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <msup> <mi>G</mi> <msup> <mrow></mrow> <mo>&#8242;</mo> </msup> </msup> <mo>/</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mo>=</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mo>&#958;</mo> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> satisfies a second order linear ordinary differential equation. In this paper, <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <msup> <mi>G</mi> <msup> <mrow></mrow> <mo>&#8242;</mo> </msup> </msup> <mo>/</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>-expansion method will represent, the travelling wave solutions of fractional-order Klein-Gordon and Gas Dynamics equations in the term of trigonometric, hyperbolic and rational functions.
ISSN:2073-8994