Hypothyroidism Intensifies Both Canonic and the <i>De Novo</i> Pathway of Peroxisomal Biogenesis in Rat Brown Adipocytes in a Time-Dependent Manner

Despite peroxisomes being important partners of mitochondria by carrying out fatty acid oxidation in brown adipocytes, no clear evidence concerning peroxisome origin and way(s) of biogenesis exists. Herein we used methimazole-induced hypothyroidism for 7, 15, and 21 days to study peroxisomal remodel...

Full description

Bibliographic Details
Main Authors: Marija Aleksic, Igor Golic, Andjelika Kalezic, Aleksandra Jankovic, Bato Korac, Aleksandra Korac
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/10/9/2248
Description
Summary:Despite peroxisomes being important partners of mitochondria by carrying out fatty acid oxidation in brown adipocytes, no clear evidence concerning peroxisome origin and way(s) of biogenesis exists. Herein we used methimazole-induced hypothyroidism for 7, 15, and 21 days to study peroxisomal remodeling and origin in rat brown adipocytes. We found that peroxisomes originated via both canonic, and <i>de novo</i> pathways. Each pathway operates in euthyroid control and over the course of hypothyroidism, in a time-dependent manner. Hypothyroidism increased the peroxisomal number by 1.8-, 3.6- and 5.8-fold on days 7, 15, and 21. Peroxisomal presence, their distribution, and their degree of maturation were heterogeneous in brown adipocytes in a Harlequin-like manner, reflecting differences in their origin. The canonic pathway, through numerous dumbbell-like and “pearls on strings” structures, supported by high levels of Pex11β and Drp1, prevailed on day 7. The <i>de novo</i> pathway of peroxisomal biogenesis started on day 15 and became dominant by day 21. The transition of peroxisomal biogenesis from canonic to the <i>de novo</i> pathway was driven by increased levels of Pex19, PMP70, Pex5S, and Pex26 and characterized by numerous tubular structures. Furthermore, specific peroxisomal origin from mitochondria, regardless of thyroid status, indicates their mutual regulation in rat brown adipocytes.
ISSN:2073-4409