Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model
In this paper, we prove recursive formulas for ultimate time survival probability when three random claims <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>,</mo> <mi&...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-01-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/2/147 |
id |
doaj-d015ae71cc544c0b92a80b3e3af93d52 |
---|---|
record_format |
Article |
spelling |
doaj-d015ae71cc544c0b92a80b3e3af93d522020-11-25T01:38:34ZengMDPI AGMathematics2227-73902020-01-018214710.3390/math8020147math8020147Ultimate Time Survival Probability in Three-Risk Discrete Time Risk ModelAndrius Grigutis0Jonas Šiaulys1Institute of Mathematics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, LithuaniaInstitute of Mathematics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, LithuaniaIn this paper, we prove recursive formulas for ultimate time survival probability when three random claims <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>,</mo> <mi>Z</mi> </mrow> </semantics> </math> </inline-formula> in the discrete time risk model occur in a special way. Namely, we suppose that claim <i>X</i> occurs at each moment of time <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>, claim <i>Y</i> additionally occurs at even moments of time <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>{</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mo>…</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula> and claim <i>Z</i> additionally occurs at every moment of time, which is a multiple of three <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>{</mo> <mn>3</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mo>…</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>. Under such assumptions, the model that is obtained is called the three-risk discrete time model. Such a model is a particular case of a nonhomogeneous risk renewal model. The sequence of claims has the form <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mi>X</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Z</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>,</mo> <mi>X</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>+</mo> <mi>Z</mi> <mo>,</mo> <mo>…</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>. Using the recursive formulas, algorithms were developed to calculate the exact values of survival probabilities for the three-risk discrete time model. The running of algorithms is illustrated via numerical examples.https://www.mdpi.com/2227-7390/8/2/147multi-risk modeldiscrete-time risk modelruin probabilitysurvival probabilityultimate timenet profit condition |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Andrius Grigutis Jonas Šiaulys |
spellingShingle |
Andrius Grigutis Jonas Šiaulys Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model Mathematics multi-risk model discrete-time risk model ruin probability survival probability ultimate time net profit condition |
author_facet |
Andrius Grigutis Jonas Šiaulys |
author_sort |
Andrius Grigutis |
title |
Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model |
title_short |
Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model |
title_full |
Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model |
title_fullStr |
Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model |
title_full_unstemmed |
Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model |
title_sort |
ultimate time survival probability in three-risk discrete time risk model |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-01-01 |
description |
In this paper, we prove recursive formulas for ultimate time survival probability when three random claims <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>,</mo> <mi>Z</mi> </mrow> </semantics> </math> </inline-formula> in the discrete time risk model occur in a special way. Namely, we suppose that claim <i>X</i> occurs at each moment of time <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>, claim <i>Y</i> additionally occurs at even moments of time <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>{</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mo>…</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula> and claim <i>Z</i> additionally occurs at every moment of time, which is a multiple of three <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>{</mo> <mn>3</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mo>…</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>. Under such assumptions, the model that is obtained is called the three-risk discrete time model. Such a model is a particular case of a nonhomogeneous risk renewal model. The sequence of claims has the form <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mi>X</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Z</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>,</mo> <mi>X</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>+</mo> <mi>Z</mi> <mo>,</mo> <mo>…</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>. Using the recursive formulas, algorithms were developed to calculate the exact values of survival probabilities for the three-risk discrete time model. The running of algorithms is illustrated via numerical examples. |
topic |
multi-risk model discrete-time risk model ruin probability survival probability ultimate time net profit condition |
url |
https://www.mdpi.com/2227-7390/8/2/147 |
work_keys_str_mv |
AT andriusgrigutis ultimatetimesurvivalprobabilityinthreeriskdiscretetimeriskmodel AT jonassiaulys ultimatetimesurvivalprobabilityinthreeriskdiscretetimeriskmodel |
_version_ |
1725053031102283776 |