Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model

In this paper, we prove recursive formulas for ultimate time survival probability when three random claims <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>,</mo> <mi&...

Full description

Bibliographic Details
Main Authors: Andrius Grigutis, Jonas Šiaulys
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/2/147
id doaj-d015ae71cc544c0b92a80b3e3af93d52
record_format Article
spelling doaj-d015ae71cc544c0b92a80b3e3af93d522020-11-25T01:38:34ZengMDPI AGMathematics2227-73902020-01-018214710.3390/math8020147math8020147Ultimate Time Survival Probability in Three-Risk Discrete Time Risk ModelAndrius Grigutis0Jonas Šiaulys1Institute of Mathematics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, LithuaniaInstitute of Mathematics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, LithuaniaIn this paper, we prove recursive formulas for ultimate time survival probability when three random claims <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>,</mo> <mi>Z</mi> </mrow> </semantics> </math> </inline-formula> in the discrete time risk model occur in a special way. Namely, we suppose that claim <i>X</i> occurs at each moment of time <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8712;</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#8230;</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>, claim <i>Y</i> additionally occurs at even moments of time <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8712;</mo> <mo>{</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mo>&#8230;</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula> and claim <i>Z</i> additionally occurs at every moment of time, which is a multiple of three <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8712;</mo> <mo>{</mo> <mn>3</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mo>&#8230;</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>. Under such assumptions, the model that is obtained is called the three-risk discrete time model. Such a model is a particular case of a nonhomogeneous risk renewal model. The sequence of claims has the form <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mi>X</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Z</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>,</mo> <mi>X</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>+</mo> <mi>Z</mi> <mo>,</mo> <mo>&#8230;</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>. Using the recursive formulas, algorithms were developed to calculate the exact values of survival probabilities for the three-risk discrete time model. The running of algorithms is illustrated via numerical examples.https://www.mdpi.com/2227-7390/8/2/147multi-risk modeldiscrete-time risk modelruin probabilitysurvival probabilityultimate timenet profit condition
collection DOAJ
language English
format Article
sources DOAJ
author Andrius Grigutis
Jonas Šiaulys
spellingShingle Andrius Grigutis
Jonas Šiaulys
Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model
Mathematics
multi-risk model
discrete-time risk model
ruin probability
survival probability
ultimate time
net profit condition
author_facet Andrius Grigutis
Jonas Šiaulys
author_sort Andrius Grigutis
title Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model
title_short Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model
title_full Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model
title_fullStr Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model
title_full_unstemmed Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model
title_sort ultimate time survival probability in three-risk discrete time risk model
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-01-01
description In this paper, we prove recursive formulas for ultimate time survival probability when three random claims <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>,</mo> <mi>Z</mi> </mrow> </semantics> </math> </inline-formula> in the discrete time risk model occur in a special way. Namely, we suppose that claim <i>X</i> occurs at each moment of time <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8712;</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#8230;</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>, claim <i>Y</i> additionally occurs at even moments of time <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8712;</mo> <mo>{</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mo>&#8230;</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula> and claim <i>Z</i> additionally occurs at every moment of time, which is a multiple of three <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8712;</mo> <mo>{</mo> <mn>3</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mo>&#8230;</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>. Under such assumptions, the model that is obtained is called the three-risk discrete time model. Such a model is a particular case of a nonhomogeneous risk renewal model. The sequence of claims has the form <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mi>X</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Z</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>,</mo> <mi>X</mi> <mo>,</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>+</mo> <mi>Z</mi> <mo>,</mo> <mo>&#8230;</mo> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>. Using the recursive formulas, algorithms were developed to calculate the exact values of survival probabilities for the three-risk discrete time model. The running of algorithms is illustrated via numerical examples.
topic multi-risk model
discrete-time risk model
ruin probability
survival probability
ultimate time
net profit condition
url https://www.mdpi.com/2227-7390/8/2/147
work_keys_str_mv AT andriusgrigutis ultimatetimesurvivalprobabilityinthreeriskdiscretetimeriskmodel
AT jonassiaulys ultimatetimesurvivalprobabilityinthreeriskdiscretetimeriskmodel
_version_ 1725053031102283776