Summary: | More than 12 chemokine receptors (CKRs) have been identified as coreceptors for the entry of human immunodeficiency virus type 1 (HIV-1), type 2 (HIV-2), and simian immunodeficiency viruses (SIVs) into target cells. The expression of CC chemokine receptor 6 (CCR6) on Th17 cells and regulatory T cells make the host cells vulnerable to HIV/SIV infection preferentially. However, only limited information is available concerning the specific role of CCR6 in HIV/SIV infection. We examined CCR6 as a coreceptor candidate in this study using NP-2 cell line-based in-vitro studies. Normally, CD4-transduced cell line, NP-2/CD4, is strictly resistant to all HIV/SIV infection. When CCR6 was transduced there, the resultant NP-2/CD4/CCR6 cells became susceptible to HIV-1HAN2, HIV-2MIR and SIVsmE660, indicating coreceptor roles of CCR6. Viral antigens in infected cells were detected by IFA and confirmed by detection of proviral DNA. Infection-induced syncytia in NP-2/CD4/CCR6 cells were detected by Giemsa staining. Amount of virus release through CCR6 has been detected by RT assay in spent culture medium. Sequence analysis of proviral DNA showed two common amino acid substitutions in the C2 envelope region of HIV-2MIR clones propagated through NP-2/CD4/CCR6 cells. Conversely, CCR6-origin SIVsmE660 clones resulted two amino acid changes in the V1 region and one change in the C2 region. The substitutions in the C2 region for HIV-2MIR and the V1 region of SIVsmE660 may confer selection advantage for CCR6-use. Together, the results describe CCR6 as an independent coreceptor for HIV and SIV in strain-specific manner. The alteration of CCR6 uses by viruses may influence the susceptibility of CD4+ CCR6+ T-cells and dendritic cell subsets in vivo and therefore, is important for viral pathogenesis in establishing latent infections, trafficking, and transmission. However, clinical relevance of CCR6 as coreceptor in HIV/SIV infections should be investigated further.
|