Einstein equations for a Finsler-Larange space with canonical N-linear connections
This paper is devoted to study the geometry of Einstein equations of Finsler-Lagrange with \((α,β)\)-metrics. We characterized the Einstein equations of Finsler Lagrange space with Randers metric, by using canonical N-metrical connection.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Ptolemy Scientific Research Press
2020-06-01
|
Series: | Open Journal of Mathematical Sciences |
Subjects: | |
Online Access: | https://pisrt.org/psr-press/journals/oms-vol-4-2020/einstein-equations-for-a-finsler-larange-space-with-canonical-n-linear-connections/ |
id |
doaj-cffb7e5ceba043479dbd7929fc61fa9e |
---|---|
record_format |
Article |
spelling |
doaj-cffb7e5ceba043479dbd7929fc61fa9e2021-01-09T14:54:38ZengPtolemy Scientific Research PressOpen Journal of Mathematical Sciences2616-49062523-02122020-06-014124024710.30538/oms2020.0114Einstein equations for a Finsler-Larange space with canonical N-linear connectionsRoopa M. K 10Narasimhamurthy S. K1Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta – 577451, Shivamogga, Karnataka.Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta – 577451, Shivamogga, Karnataka.This paper is devoted to study the geometry of Einstein equations of Finsler-Lagrange with \((α,β)\)-metrics. We characterized the Einstein equations of Finsler Lagrange space with Randers metric, by using canonical N-metrical connection.https://pisrt.org/psr-press/journals/oms-vol-4-2020/einstein-equations-for-a-finsler-larange-space-with-canonical-n-linear-connections/finsler spacelagrange spacecartan connection( αβ ) -metricsricci curvaturescalar curvature |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Roopa M. K 1 Narasimhamurthy S. K |
spellingShingle |
Roopa M. K 1 Narasimhamurthy S. K Einstein equations for a Finsler-Larange space with canonical N-linear connections Open Journal of Mathematical Sciences finsler space lagrange space cartan connection ( α β ) -metrics ricci curvature scalar curvature |
author_facet |
Roopa M. K 1 Narasimhamurthy S. K |
author_sort |
Roopa M. K 1 |
title |
Einstein equations for a Finsler-Larange space with canonical N-linear connections |
title_short |
Einstein equations for a Finsler-Larange space with canonical N-linear connections |
title_full |
Einstein equations for a Finsler-Larange space with canonical N-linear connections |
title_fullStr |
Einstein equations for a Finsler-Larange space with canonical N-linear connections |
title_full_unstemmed |
Einstein equations for a Finsler-Larange space with canonical N-linear connections |
title_sort |
einstein equations for a finsler-larange space with canonical n-linear connections |
publisher |
Ptolemy Scientific Research Press |
series |
Open Journal of Mathematical Sciences |
issn |
2616-4906 2523-0212 |
publishDate |
2020-06-01 |
description |
This paper is devoted to study the geometry of Einstein equations of Finsler-Lagrange with \((α,β)\)-metrics. We characterized the Einstein equations of Finsler Lagrange space with Randers metric, by using canonical N-metrical connection. |
topic |
finsler space lagrange space cartan connection ( α β ) -metrics ricci curvature scalar curvature |
url |
https://pisrt.org/psr-press/journals/oms-vol-4-2020/einstein-equations-for-a-finsler-larange-space-with-canonical-n-linear-connections/ |
work_keys_str_mv |
AT roopamk1 einsteinequationsforafinslerlarangespacewithcanonicalnlinearconnections AT narasimhamurthysk einsteinequationsforafinslerlarangespacewithcanonicalnlinearconnections |
_version_ |
1724344025381601280 |