Einstein equations for a Finsler-Larange space with canonical N-linear connections

This paper is devoted to study the geometry of Einstein equations of Finsler-Lagrange with \((α,β)\)-metrics. We characterized the Einstein equations of Finsler Lagrange space with Randers metric, by using canonical N-metrical connection.

Bibliographic Details
Main Authors: Roopa M. K 1, Narasimhamurthy S. K
Format: Article
Language:English
Published: Ptolemy Scientific Research Press 2020-06-01
Series:Open Journal of Mathematical Sciences
Subjects:
Online Access:https://pisrt.org/psr-press/journals/oms-vol-4-2020/einstein-equations-for-a-finsler-larange-space-with-canonical-n-linear-connections/
id doaj-cffb7e5ceba043479dbd7929fc61fa9e
record_format Article
spelling doaj-cffb7e5ceba043479dbd7929fc61fa9e2021-01-09T14:54:38ZengPtolemy Scientific Research PressOpen Journal of Mathematical Sciences2616-49062523-02122020-06-014124024710.30538/oms2020.0114Einstein equations for a Finsler-Larange space with canonical N-linear connectionsRoopa M. K 10Narasimhamurthy S. K1Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta – 577451, Shivamogga, Karnataka.Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta – 577451, Shivamogga, Karnataka.This paper is devoted to study the geometry of Einstein equations of Finsler-Lagrange with \((α,β)\)-metrics. We characterized the Einstein equations of Finsler Lagrange space with Randers metric, by using canonical N-metrical connection.https://pisrt.org/psr-press/journals/oms-vol-4-2020/einstein-equations-for-a-finsler-larange-space-with-canonical-n-linear-connections/finsler spacelagrange spacecartan connection( αβ ) -metricsricci curvaturescalar curvature
collection DOAJ
language English
format Article
sources DOAJ
author Roopa M. K 1
Narasimhamurthy S. K
spellingShingle Roopa M. K 1
Narasimhamurthy S. K
Einstein equations for a Finsler-Larange space with canonical N-linear connections
Open Journal of Mathematical Sciences
finsler space
lagrange space
cartan connection
( α
β ) -metrics
ricci curvature
scalar curvature
author_facet Roopa M. K 1
Narasimhamurthy S. K
author_sort Roopa M. K 1
title Einstein equations for a Finsler-Larange space with canonical N-linear connections
title_short Einstein equations for a Finsler-Larange space with canonical N-linear connections
title_full Einstein equations for a Finsler-Larange space with canonical N-linear connections
title_fullStr Einstein equations for a Finsler-Larange space with canonical N-linear connections
title_full_unstemmed Einstein equations for a Finsler-Larange space with canonical N-linear connections
title_sort einstein equations for a finsler-larange space with canonical n-linear connections
publisher Ptolemy Scientific Research Press
series Open Journal of Mathematical Sciences
issn 2616-4906
2523-0212
publishDate 2020-06-01
description This paper is devoted to study the geometry of Einstein equations of Finsler-Lagrange with \((α,β)\)-metrics. We characterized the Einstein equations of Finsler Lagrange space with Randers metric, by using canonical N-metrical connection.
topic finsler space
lagrange space
cartan connection
( α
β ) -metrics
ricci curvature
scalar curvature
url https://pisrt.org/psr-press/journals/oms-vol-4-2020/einstein-equations-for-a-finsler-larange-space-with-canonical-n-linear-connections/
work_keys_str_mv AT roopamk1 einsteinequationsforafinslerlarangespacewithcanonicalnlinearconnections
AT narasimhamurthysk einsteinequationsforafinslerlarangespacewithcanonicalnlinearconnections
_version_ 1724344025381601280