Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors

Accurate temperature measurements with a high spatial resolution for application in the biomedical fields demand novel nanosized thermometers with new advanced properties. Here, a water dispersible ratiometric temperature sensor is fabricated by encapsulating in silica nanoparticles, organic capped...

Full description

Bibliographic Details
Main Authors: Elisabetta Fanizza, Haiguang Zhao, Simona De Zio, Nicoletta Depalo, Federico Rosei, Alberto Vomiero, M. Lucia Curri, Marinella Striccoli
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/8/2767
id doaj-cfce38b565d24dee8fda3c147144808f
record_format Article
spelling doaj-cfce38b565d24dee8fda3c147144808f2020-11-25T02:55:17ZengMDPI AGApplied Sciences2076-34172020-04-01102767276710.3390/app10082767Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature NanosensorsElisabetta Fanizza0Haiguang Zhao1Simona De Zio2Nicoletta Depalo3Federico Rosei4Alberto Vomiero5M. Lucia Curri6Marinella Striccoli7Dipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, ItalyState Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, ChinaDipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, ItalyCNR-IPCF, SSO Bari, Via Orabona 4, 70126 Bari, ItalyCentre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, QC J3X 1S2, CanadaDivision of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 98 Luleå, SwedenDipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, ItalyCNR-IPCF, SSO Bari, Via Orabona 4, 70126 Bari, ItalyAccurate temperature measurements with a high spatial resolution for application in the biomedical fields demand novel nanosized thermometers with new advanced properties. Here, a water dispersible ratiometric temperature sensor is fabricated by encapsulating in silica nanoparticles, organic capped PbS@CdS@CdS “giant” quantum dots (GQDs), characterized by dual emission in the visible and near infrared spectral range, already assessed as efficient fluorescent nanothermometers. The chemical stability, easy surface functionalization, limited toxicity and transparency of the silica coating represent advantageous features for the realization of a nanoscale heterostructure suitable for temperature sensing. However, the strong dependence of the optical properties on the morphology of the final core–shell nanoparticle requires an accurate control of the encapsulation process. We carried out a systematic investigation of the synthetic conditions to achieve, by the microemulsion method, uniform and single core silica coated GQD (GQD@SiO<sub>2</sub>) nanoparticles and subsequently recorded temperature-dependent fluorescent spectra in the 281-313 K temperature range, suited for biological systems. The ratiometric response—the ratio between the two integrated PbS and CdS emission bands—is found to monotonically decrease with the temperature, showing a sensitivity comparable to bare GQDs, and thus confirming the effectiveness of the functionalization strategy and the potential of GQD@SiO<sub>2</sub> in future biomedical applications.https://www.mdpi.com/2076-3417/10/8/2767QD functionalizationsilica shell, optical sensorratiometric sensingnanothermometers
collection DOAJ
language English
format Article
sources DOAJ
author Elisabetta Fanizza
Haiguang Zhao
Simona De Zio
Nicoletta Depalo
Federico Rosei
Alberto Vomiero
M. Lucia Curri
Marinella Striccoli
spellingShingle Elisabetta Fanizza
Haiguang Zhao
Simona De Zio
Nicoletta Depalo
Federico Rosei
Alberto Vomiero
M. Lucia Curri
Marinella Striccoli
Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors
Applied Sciences
QD functionalization
silica shell, optical sensor
ratiometric sensing
nanothermometers
author_facet Elisabetta Fanizza
Haiguang Zhao
Simona De Zio
Nicoletta Depalo
Federico Rosei
Alberto Vomiero
M. Lucia Curri
Marinella Striccoli
author_sort Elisabetta Fanizza
title Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors
title_short Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors
title_full Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors
title_fullStr Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors
title_full_unstemmed Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors
title_sort encapsulation of dual emitting giant quantum dots in silica nanoparticles for optical ratiometric temperature nanosensors
publisher MDPI AG
series Applied Sciences
issn 2076-3417
publishDate 2020-04-01
description Accurate temperature measurements with a high spatial resolution for application in the biomedical fields demand novel nanosized thermometers with new advanced properties. Here, a water dispersible ratiometric temperature sensor is fabricated by encapsulating in silica nanoparticles, organic capped PbS@CdS@CdS “giant” quantum dots (GQDs), characterized by dual emission in the visible and near infrared spectral range, already assessed as efficient fluorescent nanothermometers. The chemical stability, easy surface functionalization, limited toxicity and transparency of the silica coating represent advantageous features for the realization of a nanoscale heterostructure suitable for temperature sensing. However, the strong dependence of the optical properties on the morphology of the final core–shell nanoparticle requires an accurate control of the encapsulation process. We carried out a systematic investigation of the synthetic conditions to achieve, by the microemulsion method, uniform and single core silica coated GQD (GQD@SiO<sub>2</sub>) nanoparticles and subsequently recorded temperature-dependent fluorescent spectra in the 281-313 K temperature range, suited for biological systems. The ratiometric response—the ratio between the two integrated PbS and CdS emission bands—is found to monotonically decrease with the temperature, showing a sensitivity comparable to bare GQDs, and thus confirming the effectiveness of the functionalization strategy and the potential of GQD@SiO<sub>2</sub> in future biomedical applications.
topic QD functionalization
silica shell, optical sensor
ratiometric sensing
nanothermometers
url https://www.mdpi.com/2076-3417/10/8/2767
work_keys_str_mv AT elisabettafanizza encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors
AT haiguangzhao encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors
AT simonadezio encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors
AT nicolettadepalo encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors
AT federicorosei encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors
AT albertovomiero encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors
AT mluciacurri encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors
AT marinellastriccoli encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors
_version_ 1724716944943218688