Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors
Accurate temperature measurements with a high spatial resolution for application in the biomedical fields demand novel nanosized thermometers with new advanced properties. Here, a water dispersible ratiometric temperature sensor is fabricated by encapsulating in silica nanoparticles, organic capped...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/10/8/2767 |
id |
doaj-cfce38b565d24dee8fda3c147144808f |
---|---|
record_format |
Article |
spelling |
doaj-cfce38b565d24dee8fda3c147144808f2020-11-25T02:55:17ZengMDPI AGApplied Sciences2076-34172020-04-01102767276710.3390/app10082767Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature NanosensorsElisabetta Fanizza0Haiguang Zhao1Simona De Zio2Nicoletta Depalo3Federico Rosei4Alberto Vomiero5M. Lucia Curri6Marinella Striccoli7Dipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, ItalyState Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, ChinaDipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, ItalyCNR-IPCF, SSO Bari, Via Orabona 4, 70126 Bari, ItalyCentre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, QC J3X 1S2, CanadaDivision of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 98 Luleå, SwedenDipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, ItalyCNR-IPCF, SSO Bari, Via Orabona 4, 70126 Bari, ItalyAccurate temperature measurements with a high spatial resolution for application in the biomedical fields demand novel nanosized thermometers with new advanced properties. Here, a water dispersible ratiometric temperature sensor is fabricated by encapsulating in silica nanoparticles, organic capped PbS@CdS@CdS “giant” quantum dots (GQDs), characterized by dual emission in the visible and near infrared spectral range, already assessed as efficient fluorescent nanothermometers. The chemical stability, easy surface functionalization, limited toxicity and transparency of the silica coating represent advantageous features for the realization of a nanoscale heterostructure suitable for temperature sensing. However, the strong dependence of the optical properties on the morphology of the final core–shell nanoparticle requires an accurate control of the encapsulation process. We carried out a systematic investigation of the synthetic conditions to achieve, by the microemulsion method, uniform and single core silica coated GQD (GQD@SiO<sub>2</sub>) nanoparticles and subsequently recorded temperature-dependent fluorescent spectra in the 281-313 K temperature range, suited for biological systems. The ratiometric response—the ratio between the two integrated PbS and CdS emission bands—is found to monotonically decrease with the temperature, showing a sensitivity comparable to bare GQDs, and thus confirming the effectiveness of the functionalization strategy and the potential of GQD@SiO<sub>2</sub> in future biomedical applications.https://www.mdpi.com/2076-3417/10/8/2767QD functionalizationsilica shell, optical sensorratiometric sensingnanothermometers |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Elisabetta Fanizza Haiguang Zhao Simona De Zio Nicoletta Depalo Federico Rosei Alberto Vomiero M. Lucia Curri Marinella Striccoli |
spellingShingle |
Elisabetta Fanizza Haiguang Zhao Simona De Zio Nicoletta Depalo Federico Rosei Alberto Vomiero M. Lucia Curri Marinella Striccoli Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors Applied Sciences QD functionalization silica shell, optical sensor ratiometric sensing nanothermometers |
author_facet |
Elisabetta Fanizza Haiguang Zhao Simona De Zio Nicoletta Depalo Federico Rosei Alberto Vomiero M. Lucia Curri Marinella Striccoli |
author_sort |
Elisabetta Fanizza |
title |
Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors |
title_short |
Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors |
title_full |
Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors |
title_fullStr |
Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors |
title_full_unstemmed |
Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors |
title_sort |
encapsulation of dual emitting giant quantum dots in silica nanoparticles for optical ratiometric temperature nanosensors |
publisher |
MDPI AG |
series |
Applied Sciences |
issn |
2076-3417 |
publishDate |
2020-04-01 |
description |
Accurate temperature measurements with a high spatial resolution for application in the biomedical fields demand novel nanosized thermometers with new advanced properties. Here, a water dispersible ratiometric temperature sensor is fabricated by encapsulating in silica nanoparticles, organic capped PbS@CdS@CdS “giant” quantum dots (GQDs), characterized by dual emission in the visible and near infrared spectral range, already assessed as efficient fluorescent nanothermometers. The chemical stability, easy surface functionalization, limited toxicity and transparency of the silica coating represent advantageous features for the realization of a nanoscale heterostructure suitable for temperature sensing. However, the strong dependence of the optical properties on the morphology of the final core–shell nanoparticle requires an accurate control of the encapsulation process. We carried out a systematic investigation of the synthetic conditions to achieve, by the microemulsion method, uniform and single core silica coated GQD (GQD@SiO<sub>2</sub>) nanoparticles and subsequently recorded temperature-dependent fluorescent spectra in the 281-313 K temperature range, suited for biological systems. The ratiometric response—the ratio between the two integrated PbS and CdS emission bands—is found to monotonically decrease with the temperature, showing a sensitivity comparable to bare GQDs, and thus confirming the effectiveness of the functionalization strategy and the potential of GQD@SiO<sub>2</sub> in future biomedical applications. |
topic |
QD functionalization silica shell, optical sensor ratiometric sensing nanothermometers |
url |
https://www.mdpi.com/2076-3417/10/8/2767 |
work_keys_str_mv |
AT elisabettafanizza encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors AT haiguangzhao encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors AT simonadezio encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors AT nicolettadepalo encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors AT federicorosei encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors AT albertovomiero encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors AT mluciacurri encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors AT marinellastriccoli encapsulationofdualemittinggiantquantumdotsinsilicananoparticlesforopticalratiometrictemperaturenanosensors |
_version_ |
1724716944943218688 |