Increased Mitochondrial Mass and Cytosolic Redox Imbalance in Hippocampal Astrocytes of a Mouse Model of Rett Syndrome: Subcellular Changes Revealed by Ratiometric Imaging of JC-1 and roGFP1 Fluorescence
Rett syndrome (RTT) is a neurodevelopmental disorder with mutations in the MECP2 gene. Mostly girls are affected, and an apparently normal development is followed by cognitive impairment, motor dysfunction, epilepsy, and irregular breathing. Various indications suggest mitochondrial dysfunction. In...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | Oxidative Medicine and Cellular Longevity |
Online Access: | http://dx.doi.org/10.1155/2017/3064016 |
id |
doaj-cfb858855e96470990653e1fe8cf8518 |
---|---|
record_format |
Article |
spelling |
doaj-cfb858855e96470990653e1fe8cf85182020-11-24T21:29:08ZengHindawi LimitedOxidative Medicine and Cellular Longevity1942-09001942-09942017-01-01201710.1155/2017/30640163064016Increased Mitochondrial Mass and Cytosolic Redox Imbalance in Hippocampal Astrocytes of a Mouse Model of Rett Syndrome: Subcellular Changes Revealed by Ratiometric Imaging of JC-1 and roGFP1 FluorescenceDörthe F. Bebensee0Karolina Can1Michael Müller2Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Göttingen, GermanyCenter for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Göttingen, GermanyCenter for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Göttingen, GermanyRett syndrome (RTT) is a neurodevelopmental disorder with mutations in the MECP2 gene. Mostly girls are affected, and an apparently normal development is followed by cognitive impairment, motor dysfunction, epilepsy, and irregular breathing. Various indications suggest mitochondrial dysfunction. In Rett mice, brain ATP levels are reduced, mitochondria are leaking protons, and respiratory complexes are dysregulated. Furthermore, we found in MeCP2-deficient mouse (Mecp2−/y) hippocampus an intensified mitochondrial metabolism and ROS generation. We now used emission ratiometric 2-photon imaging to assess mitochondrial morphology, mass, and membrane potential (ΔΨm) in Mecp2−/y hippocampal astrocytes. Cultured astrocytes were labeled with the ΔΨm marker JC-1, and semiautomated analyses yielded the number of mitochondria per cell, their morphology, and ΔΨm. Mecp2−/y astrocytes contained more mitochondria than wild-type (WT) cells and were more oxidized. Mitochondrial size, ΔΨm, and vulnerability to pharmacological challenge did not differ. The antioxidant Trolox opposed the oxidative burden and decreased the mitochondrial mass, thereby dampening the differences among WT and Mecp2−/y astrocytes; mitochondrial size and ΔΨm were not markedly affected. In conclusion, mitochondrial alterations and redox imbalance in RTT also involve astrocytes. Mitochondria are more numerous in Mecp2−/y than in WT astrocytes. As this genotypic difference is abolished by Trolox, it seems linked to the oxidative stress in RTT.http://dx.doi.org/10.1155/2017/3064016 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dörthe F. Bebensee Karolina Can Michael Müller |
spellingShingle |
Dörthe F. Bebensee Karolina Can Michael Müller Increased Mitochondrial Mass and Cytosolic Redox Imbalance in Hippocampal Astrocytes of a Mouse Model of Rett Syndrome: Subcellular Changes Revealed by Ratiometric Imaging of JC-1 and roGFP1 Fluorescence Oxidative Medicine and Cellular Longevity |
author_facet |
Dörthe F. Bebensee Karolina Can Michael Müller |
author_sort |
Dörthe F. Bebensee |
title |
Increased Mitochondrial Mass and Cytosolic Redox Imbalance in Hippocampal Astrocytes of a Mouse Model of Rett Syndrome: Subcellular Changes Revealed by Ratiometric Imaging of JC-1 and roGFP1 Fluorescence |
title_short |
Increased Mitochondrial Mass and Cytosolic Redox Imbalance in Hippocampal Astrocytes of a Mouse Model of Rett Syndrome: Subcellular Changes Revealed by Ratiometric Imaging of JC-1 and roGFP1 Fluorescence |
title_full |
Increased Mitochondrial Mass and Cytosolic Redox Imbalance in Hippocampal Astrocytes of a Mouse Model of Rett Syndrome: Subcellular Changes Revealed by Ratiometric Imaging of JC-1 and roGFP1 Fluorescence |
title_fullStr |
Increased Mitochondrial Mass and Cytosolic Redox Imbalance in Hippocampal Astrocytes of a Mouse Model of Rett Syndrome: Subcellular Changes Revealed by Ratiometric Imaging of JC-1 and roGFP1 Fluorescence |
title_full_unstemmed |
Increased Mitochondrial Mass and Cytosolic Redox Imbalance in Hippocampal Astrocytes of a Mouse Model of Rett Syndrome: Subcellular Changes Revealed by Ratiometric Imaging of JC-1 and roGFP1 Fluorescence |
title_sort |
increased mitochondrial mass and cytosolic redox imbalance in hippocampal astrocytes of a mouse model of rett syndrome: subcellular changes revealed by ratiometric imaging of jc-1 and rogfp1 fluorescence |
publisher |
Hindawi Limited |
series |
Oxidative Medicine and Cellular Longevity |
issn |
1942-0900 1942-0994 |
publishDate |
2017-01-01 |
description |
Rett syndrome (RTT) is a neurodevelopmental disorder with mutations in the MECP2 gene. Mostly girls are affected, and an apparently normal development is followed by cognitive impairment, motor dysfunction, epilepsy, and irregular breathing. Various indications suggest mitochondrial dysfunction. In Rett mice, brain ATP levels are reduced, mitochondria are leaking protons, and respiratory complexes are dysregulated. Furthermore, we found in MeCP2-deficient mouse (Mecp2−/y) hippocampus an intensified mitochondrial metabolism and ROS generation. We now used emission ratiometric 2-photon imaging to assess mitochondrial morphology, mass, and membrane potential (ΔΨm) in Mecp2−/y hippocampal astrocytes. Cultured astrocytes were labeled with the ΔΨm marker JC-1, and semiautomated analyses yielded the number of mitochondria per cell, their morphology, and ΔΨm. Mecp2−/y astrocytes contained more mitochondria than wild-type (WT) cells and were more oxidized. Mitochondrial size, ΔΨm, and vulnerability to pharmacological challenge did not differ. The antioxidant Trolox opposed the oxidative burden and decreased the mitochondrial mass, thereby dampening the differences among WT and Mecp2−/y astrocytes; mitochondrial size and ΔΨm were not markedly affected. In conclusion, mitochondrial alterations and redox imbalance in RTT also involve astrocytes. Mitochondria are more numerous in Mecp2−/y than in WT astrocytes. As this genotypic difference is abolished by Trolox, it seems linked to the oxidative stress in RTT. |
url |
http://dx.doi.org/10.1155/2017/3064016 |
work_keys_str_mv |
AT dorthefbebensee increasedmitochondrialmassandcytosolicredoximbalanceinhippocampalastrocytesofamousemodelofrettsyndromesubcellularchangesrevealedbyratiometricimagingofjc1androgfp1fluorescence AT karolinacan increasedmitochondrialmassandcytosolicredoximbalanceinhippocampalastrocytesofamousemodelofrettsyndromesubcellularchangesrevealedbyratiometricimagingofjc1androgfp1fluorescence AT michaelmuller increasedmitochondrialmassandcytosolicredoximbalanceinhippocampalastrocytesofamousemodelofrettsyndromesubcellularchangesrevealedbyratiometricimagingofjc1androgfp1fluorescence |
_version_ |
1725967147529666560 |