Summary: | More than two-thirds of the world's HIV-positive individuals live in sub-Saharan Africa, where genetic susceptibility to kidney disease is high and resources for kidney disease screening and antiretroviral therapy (ART) toxicity monitoring are limited. Equations to estimate glomerular filtration rate (GFR) from serum creatinine were derived in Western populations and may be less accurate in this population.We compared results from published GFR estimating equations with a direct measure of GFR by iohexol clearance in 99 HIV-infected, ART-naïve Kenyan adults. Iohexol concentration was measured from dried blood spots on filter paper. The bias ratio (mean of the ratio of estimated to measured GFR) and accuracy (percentage of estimates within 30% of the measured GFR) were calculated.The median age was 35 years, and 60% were women. The majority had asymptomatic HIV, with median CD4+ cell count of 355 cells/mm(3). Median measured GFR was 115 mL/min/1.73 m(2). Overall accuracy was highest for the Chronic Kidney Disease Epidemiology Consortium (CKD-EPI) equation. Consistent with a prior report, bias and accuracy were improved by eliminating the coefficient for black race (85% of estimates within 30% of measured GFR). Accuracy of all equations was poor in participants with GFR 60-90 mL/min/1.73 m(2) (<65% of estimates within 30% of measured GFR), although this subgroup was too small to reach definitive conclusions.Overall accuracy was highest for the CKD-EPI equation. Eliminating the coefficient for race further improved performance. Future studies are needed to determine the most accurate GFR estimate for use in individuals with GFR <90 mL/min/1.73 m(2), in whom accurate estimation of kidney function is important to guide drug dosing. Direct measurement of GFR by iohexol clearance using a filter paper based assay is feasible for research purposes in resource-limited settings, and could be used to develop more accurate GFR estimates in African populations.
|