RANGE MIGRATION ALGORITHM IN THE PROCESSING CHAIN OF SIGNALS OF A GROUND-BASED SAR SENSOR

Synthetic aperture radar (SAR) system based on frequency modulated continuous wave (FM-CW) transmission is a viable option for producing high-resolution ground-based imaging radars. Compared with pulsed SAR systems, the combination of FM-CW technology and SAR processing techniques have the advantage...

Full description

Bibliographic Details
Main Authors: B. Hosseiny, J. Amini, M. Esmaeilzade, M. Nekoee
Format: Article
Language:English
Published: Copernicus Publications 2019-10-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W18/521/2019/isprs-archives-XLII-4-W18-521-2019.pdf
Description
Summary:Synthetic aperture radar (SAR) system based on frequency modulated continuous wave (FM-CW) transmission is a viable option for producing high-resolution ground-based imaging radars. Compared with pulsed SAR systems, the combination of FM-CW technology and SAR processing techniques have the advantages of small cubage, lightweight, cost-effectiveness, and high resolution in the SAR image. These characteristics make FM-CW SAR suitable to be deployed as payload on ground Based SARs (GB-SARs) for environmental and civilian applications. In this paper, the Range Migration Algorithm (RMA) is used in the processing chain of a Ground-Based SAR (GB-SAR) sensor. The mentioned sensor has been developed in Microwave Remote Sensing Laboratory (MReSL) at the School of Surveying and Geospatial Engineering, the University of Tehran for the generation of a complex image from the raw signal. The raw signal is acquired with that sensor working at S-band, frequency modulating from 2.26 GHz to 2.59 GHz.
ISSN:1682-1750
2194-9034