Evaluation of Recyclability of a WEEE Slag by Means of Integrative X-Ray Computer Tomography and SEM-Based Image Analysis

Waste of electrical and electronic equipment (WEEE) is one of the fastest growing waste streams globally. Therefore, recycling of the valuable metals of this stream plays a vital role in establishing a circular economy. The smelting process of WEEE leads to significant amounts of valuable metals and...

Full description

Bibliographic Details
Main Authors: Markus Buchmann, Nikolaus Borowski, Thomas Leißner, Thomas Heinig, Markus A. Reuter, Bernd Friedrich, Urs A. Peuker
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/10/4/309
Description
Summary:Waste of electrical and electronic equipment (WEEE) is one of the fastest growing waste streams globally. Therefore, recycling of the valuable metals of this stream plays a vital role in establishing a circular economy. The smelting process of WEEE leads to significant amounts of valuable metals and rare earth elements (REEs) trapped in the slag phase. The effective manipulation of this phase transfer process necessitates detailed understanding and effective treatment to minimize these contents. Furthermore, an adequate process control to bring these metal contents into structures that make recycling economically applicable is required. Within the present study, a typical slag from a WEEE melting process is analyzed in detail. Therefore, the material is investigated with the help of X-ray computed tomography (XCT) and scanning electron microscopy (SEM)-based mineralogical analysis (MLA) to understand the typical structures and its implications for recycling. The influencing factors are discussed, and further processing opportunities are illustrated.
ISSN:2075-163X