The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site
The hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to inaccuracies in the...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-12-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/10/12/2114 |
id |
doaj-cf8ceee50ee54f8aa28bfff454bdb01d |
---|---|
record_format |
Article |
spelling |
doaj-cf8ceee50ee54f8aa28bfff454bdb01d2020-11-24T22:04:12ZengMDPI AGEnergies1996-10732017-12-011012211410.3390/en10122114en10122114The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test SiteLei Ren0Diarmuid Nagle1Michael Hartnett2Stephen Nash3Department of Civil Engineering, National University of Ireland Galway, H91 TK33 Galway, IrelandDepartment of Civil Engineering, National University of Ireland Galway, H91 TK33 Galway, IrelandDepartment of Civil Engineering, National University of Ireland Galway, H91 TK33 Galway, IrelandDepartment of Civil Engineering, National University of Ireland Galway, H91 TK33 Galway, IrelandThe hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In this research, a high-resolution wind model was coupled with a three-dimensional hydrodynamic model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of wind forcing on model accuracy. Two wind-forcing conditions were investigated: (1) using wind data measured onshore on the NUI Galway campus (NUIG) and (2) using offshore wind data provided by a high resolution wind model (HR). A scenario with no wind forcing (NW) was also assessed. The onshore wind data varied with time but the speed and direction were applied across the full model domain. The modeled offshore wind fields varied with both time and space. The effect of wind forcing on modeled hydrodynamics was assessed via comparison of modeled surface currents with surface current measurements obtained from a High-Frequency (HF) radar Coastal Ocean Dynamics Applications Radar (CODAR) observation system. Results indicated that winds were most significant in simulating the north-south surface velocity component. The model using high resolution temporally- and spatially-varying wind data achieved better agreement with the CODAR surface currents than the model using the onshore wind measurements and the model without any wind forcing.https://www.mdpi.com/1996-1073/10/12/2114surface currentsEFDCCODARradarADCPwind field resolutionGalway Bay |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lei Ren Diarmuid Nagle Michael Hartnett Stephen Nash |
spellingShingle |
Lei Ren Diarmuid Nagle Michael Hartnett Stephen Nash The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site Energies surface currents EFDC CODAR radar ADCP wind field resolution Galway Bay |
author_facet |
Lei Ren Diarmuid Nagle Michael Hartnett Stephen Nash |
author_sort |
Lei Ren |
title |
The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site |
title_short |
The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site |
title_full |
The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site |
title_fullStr |
The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site |
title_full_unstemmed |
The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site |
title_sort |
effect of wind forcing on modeling coastal circulation at a marine renewable test site |
publisher |
MDPI AG |
series |
Energies |
issn |
1996-1073 |
publishDate |
2017-12-01 |
description |
The hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In this research, a high-resolution wind model was coupled with a three-dimensional hydrodynamic model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of wind forcing on model accuracy. Two wind-forcing conditions were investigated: (1) using wind data measured onshore on the NUI Galway campus (NUIG) and (2) using offshore wind data provided by a high resolution wind model (HR). A scenario with no wind forcing (NW) was also assessed. The onshore wind data varied with time but the speed and direction were applied across the full model domain. The modeled offshore wind fields varied with both time and space. The effect of wind forcing on modeled hydrodynamics was assessed via comparison of modeled surface currents with surface current measurements obtained from a High-Frequency (HF) radar Coastal Ocean Dynamics Applications Radar (CODAR) observation system. Results indicated that winds were most significant in simulating the north-south surface velocity component. The model using high resolution temporally- and spatially-varying wind data achieved better agreement with the CODAR surface currents than the model using the onshore wind measurements and the model without any wind forcing. |
topic |
surface currents EFDC CODAR radar ADCP wind field resolution Galway Bay |
url |
https://www.mdpi.com/1996-1073/10/12/2114 |
work_keys_str_mv |
AT leiren theeffectofwindforcingonmodelingcoastalcirculationatamarinerenewabletestsite AT diarmuidnagle theeffectofwindforcingonmodelingcoastalcirculationatamarinerenewabletestsite AT michaelhartnett theeffectofwindforcingonmodelingcoastalcirculationatamarinerenewabletestsite AT stephennash theeffectofwindforcingonmodelingcoastalcirculationatamarinerenewabletestsite AT leiren effectofwindforcingonmodelingcoastalcirculationatamarinerenewabletestsite AT diarmuidnagle effectofwindforcingonmodelingcoastalcirculationatamarinerenewabletestsite AT michaelhartnett effectofwindforcingonmodelingcoastalcirculationatamarinerenewabletestsite AT stephennash effectofwindforcingonmodelingcoastalcirculationatamarinerenewabletestsite |
_version_ |
1725830029787529216 |