Phylogeny, systematics and biogeography of the genus panolis (lepidoptera: noctuidae) based on morphological and molecular evidence.

The genus Panolis is a small group of noctuid moths with six recognized species distributed from Europe to East Asia, and best known for containing the widespread Palearctic pest species P. flammea, the pine beauty moth. However, a reliable classification and robust phylogenetic framework for this g...

Full description

Bibliographic Details
Main Authors: Houshuai Wang, Xiaoling Fan, Mamoru Owada, Min Wang, Sören Nylin
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3946178?pdf=render
Description
Summary:The genus Panolis is a small group of noctuid moths with six recognized species distributed from Europe to East Asia, and best known for containing the widespread Palearctic pest species P. flammea, the pine beauty moth. However, a reliable classification and robust phylogenetic framework for this group of potentially economic importance are currently lacking. Here, we use morphological and molecular data (mitochondrial genes cytochrome c oxidase subunit I and 16S ribosomal RNA, nuclear gene elongation factor-1 alpha) to reconstruct the phylogeny of this genus, with a comprehensive systematic revision of all recognized species and a new one, P. ningshan sp. nov. The analysis results of maximum parsimony, maximum likelihood and Bayesian inferring methods for the combined morphological and molecular data sets are highly congruent, resulting in a robust phylogeny and identification of two clear species groups, i.e., the P. flammea species group and the P. exquisita species group. We also estimate the divergence times of Panolis moths using two conventional mutation rates for the arthropod mitochondrial COI gene with a comparison of two molecular clock models, as well as reconstruct their ancestral areas. Our results suggest that 1) Panolis is a young clade, originating from the Oriental region in China in the Late Miocene (6-10Mya), with an ancestral species in the P. flammea group extending northward to the Palearctic region some 3-6 Mya; 2) there is a clear possibility for a representative of the Palearctic clade to become established as an invasive species in the Nearctic taiga.
ISSN:1932-6203