Oscillation analysis for nonlinear difference equation with non-monotone arguments

Abstract The aim of this paper is to obtain some new oscillatory conditions for all solutions of nonlinear difference equation with non-monotone or non-decreasing argument Δx(n)+p(n)f(x(τ(n)))=0,n=0,1,…, $$ \Delta x(n)+p(n)f \bigl( x \bigl( \tau (n) \bigr) \bigr) =0,\quad n=0,1,\ldots , $$where (p(n...

Full description

Bibliographic Details
Main Authors: Özkan Öcalan, Umut Mutlu Özkan, Mustafa Kemal Yildiz
Format: Article
Language:English
Published: SpringerOpen 2018-05-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-018-1630-y
id doaj-cf73f8fef0834d549c872dfaad9fa55e
record_format Article
spelling doaj-cf73f8fef0834d549c872dfaad9fa55e2020-11-24T22:50:04ZengSpringerOpenAdvances in Difference Equations1687-18472018-05-012018111110.1186/s13662-018-1630-yOscillation analysis for nonlinear difference equation with non-monotone argumentsÖzkan Öcalan0Umut Mutlu Özkan1Mustafa Kemal Yildiz2Department of Mathematics, Faculty of Science, Akdeniz UniversityDepartment of Mathematics, Faculty of Science and Arts, Afyon Kocatepe UniversityDepartment of Mathematics, Faculty of Science and Arts, Afyon Kocatepe UniversityAbstract The aim of this paper is to obtain some new oscillatory conditions for all solutions of nonlinear difference equation with non-monotone or non-decreasing argument Δx(n)+p(n)f(x(τ(n)))=0,n=0,1,…, $$ \Delta x(n)+p(n)f \bigl( x \bigl( \tau (n) \bigr) \bigr) =0,\quad n=0,1,\ldots , $$where (p(n)) $( p(n) ) $ is a sequence of nonnegative real numbers and (τ(n)) $( \tau (n) ) $ is a non-monotone or non-decreasing sequence, f∈C(R,R) $f\in C(\mathbb{R},\mathbb{R})$ and xf(x)>0 $xf(x)>0$ for x≠0 $x\neq 0$.http://link.springer.com/article/10.1186/s13662-018-1630-yDelay difference equationNon-monotone argumentsNonlinearOscillation
collection DOAJ
language English
format Article
sources DOAJ
author Özkan Öcalan
Umut Mutlu Özkan
Mustafa Kemal Yildiz
spellingShingle Özkan Öcalan
Umut Mutlu Özkan
Mustafa Kemal Yildiz
Oscillation analysis for nonlinear difference equation with non-monotone arguments
Advances in Difference Equations
Delay difference equation
Non-monotone arguments
Nonlinear
Oscillation
author_facet Özkan Öcalan
Umut Mutlu Özkan
Mustafa Kemal Yildiz
author_sort Özkan Öcalan
title Oscillation analysis for nonlinear difference equation with non-monotone arguments
title_short Oscillation analysis for nonlinear difference equation with non-monotone arguments
title_full Oscillation analysis for nonlinear difference equation with non-monotone arguments
title_fullStr Oscillation analysis for nonlinear difference equation with non-monotone arguments
title_full_unstemmed Oscillation analysis for nonlinear difference equation with non-monotone arguments
title_sort oscillation analysis for nonlinear difference equation with non-monotone arguments
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1847
publishDate 2018-05-01
description Abstract The aim of this paper is to obtain some new oscillatory conditions for all solutions of nonlinear difference equation with non-monotone or non-decreasing argument Δx(n)+p(n)f(x(τ(n)))=0,n=0,1,…, $$ \Delta x(n)+p(n)f \bigl( x \bigl( \tau (n) \bigr) \bigr) =0,\quad n=0,1,\ldots , $$where (p(n)) $( p(n) ) $ is a sequence of nonnegative real numbers and (τ(n)) $( \tau (n) ) $ is a non-monotone or non-decreasing sequence, f∈C(R,R) $f\in C(\mathbb{R},\mathbb{R})$ and xf(x)>0 $xf(x)>0$ for x≠0 $x\neq 0$.
topic Delay difference equation
Non-monotone arguments
Nonlinear
Oscillation
url http://link.springer.com/article/10.1186/s13662-018-1630-y
work_keys_str_mv AT ozkanocalan oscillationanalysisfornonlineardifferenceequationwithnonmonotonearguments
AT umutmutluozkan oscillationanalysisfornonlineardifferenceequationwithnonmonotonearguments
AT mustafakemalyildiz oscillationanalysisfornonlineardifferenceequationwithnonmonotonearguments
_version_ 1725673554535514112