Oscillation analysis for nonlinear difference equation with non-monotone arguments
Abstract The aim of this paper is to obtain some new oscillatory conditions for all solutions of nonlinear difference equation with non-monotone or non-decreasing argument Δx(n)+p(n)f(x(τ(n)))=0,n=0,1,…, $$ \Delta x(n)+p(n)f \bigl( x \bigl( \tau (n) \bigr) \bigr) =0,\quad n=0,1,\ldots , $$where (p(n...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-05-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13662-018-1630-y |
id |
doaj-cf73f8fef0834d549c872dfaad9fa55e |
---|---|
record_format |
Article |
spelling |
doaj-cf73f8fef0834d549c872dfaad9fa55e2020-11-24T22:50:04ZengSpringerOpenAdvances in Difference Equations1687-18472018-05-012018111110.1186/s13662-018-1630-yOscillation analysis for nonlinear difference equation with non-monotone argumentsÖzkan Öcalan0Umut Mutlu Özkan1Mustafa Kemal Yildiz2Department of Mathematics, Faculty of Science, Akdeniz UniversityDepartment of Mathematics, Faculty of Science and Arts, Afyon Kocatepe UniversityDepartment of Mathematics, Faculty of Science and Arts, Afyon Kocatepe UniversityAbstract The aim of this paper is to obtain some new oscillatory conditions for all solutions of nonlinear difference equation with non-monotone or non-decreasing argument Δx(n)+p(n)f(x(τ(n)))=0,n=0,1,…, $$ \Delta x(n)+p(n)f \bigl( x \bigl( \tau (n) \bigr) \bigr) =0,\quad n=0,1,\ldots , $$where (p(n)) $( p(n) ) $ is a sequence of nonnegative real numbers and (τ(n)) $( \tau (n) ) $ is a non-monotone or non-decreasing sequence, f∈C(R,R) $f\in C(\mathbb{R},\mathbb{R})$ and xf(x)>0 $xf(x)>0$ for x≠0 $x\neq 0$.http://link.springer.com/article/10.1186/s13662-018-1630-yDelay difference equationNon-monotone argumentsNonlinearOscillation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Özkan Öcalan Umut Mutlu Özkan Mustafa Kemal Yildiz |
spellingShingle |
Özkan Öcalan Umut Mutlu Özkan Mustafa Kemal Yildiz Oscillation analysis for nonlinear difference equation with non-monotone arguments Advances in Difference Equations Delay difference equation Non-monotone arguments Nonlinear Oscillation |
author_facet |
Özkan Öcalan Umut Mutlu Özkan Mustafa Kemal Yildiz |
author_sort |
Özkan Öcalan |
title |
Oscillation analysis for nonlinear difference equation with non-monotone arguments |
title_short |
Oscillation analysis for nonlinear difference equation with non-monotone arguments |
title_full |
Oscillation analysis for nonlinear difference equation with non-monotone arguments |
title_fullStr |
Oscillation analysis for nonlinear difference equation with non-monotone arguments |
title_full_unstemmed |
Oscillation analysis for nonlinear difference equation with non-monotone arguments |
title_sort |
oscillation analysis for nonlinear difference equation with non-monotone arguments |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1847 |
publishDate |
2018-05-01 |
description |
Abstract The aim of this paper is to obtain some new oscillatory conditions for all solutions of nonlinear difference equation with non-monotone or non-decreasing argument Δx(n)+p(n)f(x(τ(n)))=0,n=0,1,…, $$ \Delta x(n)+p(n)f \bigl( x \bigl( \tau (n) \bigr) \bigr) =0,\quad n=0,1,\ldots , $$where (p(n)) $( p(n) ) $ is a sequence of nonnegative real numbers and (τ(n)) $( \tau (n) ) $ is a non-monotone or non-decreasing sequence, f∈C(R,R) $f\in C(\mathbb{R},\mathbb{R})$ and xf(x)>0 $xf(x)>0$ for x≠0 $x\neq 0$. |
topic |
Delay difference equation Non-monotone arguments Nonlinear Oscillation |
url |
http://link.springer.com/article/10.1186/s13662-018-1630-y |
work_keys_str_mv |
AT ozkanocalan oscillationanalysisfornonlineardifferenceequationwithnonmonotonearguments AT umutmutluozkan oscillationanalysisfornonlineardifferenceequationwithnonmonotonearguments AT mustafakemalyildiz oscillationanalysisfornonlineardifferenceequationwithnonmonotonearguments |
_version_ |
1725673554535514112 |