Multi-Element Topochemical-Molten Salt Synthesis of One-Dimensional Piezoelectric Perovskite

Summary: One-dimensional perovskites are an interesting material for energy and optoelectronic applications. However, exploring the full wealth of architectures these materials could allow, through multi-element doping of A-sites and B-sites, is still a challenge. Here, we report a high-yield synthe...

Full description

Bibliographic Details
Main Authors: Lihong Li, Zhongyuan Xiang, Meng Gao, Cheng Bian, Meng Su, Fengyu Li, Xianran Xing, Yanlin Song
Format: Article
Language:English
Published: Elsevier 2019-07-01
Series:iScience
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004219301944
Description
Summary:Summary: One-dimensional perovskites are an interesting material for energy and optoelectronic applications. However, exploring the full wealth of architectures these materials could allow, through multi-element doping of A-sites and B-sites, is still a challenge. Here, we report a high-yield synthetic strategy for 1D perovskites via a two-step method based on a multi-element topochemical-molten salt method. Typically, a high yield of 1D multicomponent perovskite niobates (Li0.06Na0.47K0.47)(Nb0.94Sb0.06)O3 (LNKNS2) is rapidly achieved from as-synthesized 1D K2(Nb0.94Sb0.06)8O21 with multi-element B-sites. In this process, 1D K2(Nb0.94Sb0.06)8O21 has been first achieved, and the proportion of the ions in A-sites is affected by the radius and molar ratio of ions. The z axis direction of K2(Nb0.94Sb0.06)8O21 rod is transformed into the x axis direction of LNKNS2 rod. Furthermore, the output voltage of the 1D niobates-based flexible piezoelectric device (FPD) was nearly 600% compared with that of the isotropic niobates-based FPD. This work also allows convenient fabrication of other 1D multicomponent perovskites. : Physics; Materials Science; Materials Chemistry; Electronic Materials; Energy Materials Subject Areas: Physics, Materials Science, Materials Chemistry, Electronic Materials, Energy Materials
ISSN:2589-0042