Anticipating urbanization-led land cover change and its impact on local climate using time series model: a study on Dhaka city
Urbanization-led changes in natural landscape often result in environmental degradation and subsequently contribute to local climate variability. Therefore, apart from global climate change, Dhaka city’s ongoing rapid urban growth may result in altering future local climate patterns significantly....
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
The White Horse Press
2020-06-01
|
Series: | The Journal of Population and Sustainability |
Subjects: | |
Online Access: | https://whp-journals.co.uk/JPS/article/view/649 |
id |
doaj-cf4c651a1c15444db8e807740bc7cd79 |
---|---|
record_format |
Article |
spelling |
doaj-cf4c651a1c15444db8e807740bc7cd792021-09-03T08:51:42ZengThe White Horse PressThe Journal of Population and Sustainability2398-54882398-54962020-06-0142Anticipating urbanization-led land cover change and its impact on local climate using time series model: a study on Dhaka cityRipan Debnath0North South University Urbanization-led changes in natural landscape often result in environmental degradation and subsequently contribute to local climate variability. Therefore, apart from global climate change, Dhaka city’s ongoing rapid urban growth may result in altering future local climate patterns significantly. This study explores transition relationships between urbanization (population), land cover, and climate (temperature) of Dhaka city beginning in 1975 through to forecast scenarios up to 2035. Satellite image, geographic, demographic, and climatic data were analyzed. Change in core urban land cover (area) was regarded as a function of population growth and was modeled using linear regression technique. The study developed and validated a time series (ARIMA) model for predicting mean maximum temperature change where (forecasted) land cover scenarios were regressors. Throughout the studied period, the city exhibited an increasing urbanization trend that indicated persistent growth of core urban land cover in future. As a result, the city’s mean maximum temperature was found likely to increase by around 1.5-degree Celsius during 2016–2035 on average from that of observed 1996–2015 period. It is expected that findings of this study may help in recognizing urbanization-led climate change easily, which is crucial to effective climate change management actions and urban planning. https://whp-journals.co.uk/JPS/article/view/649urbanizationland coverclimate changetime series modelDhaka city |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ripan Debnath |
spellingShingle |
Ripan Debnath Anticipating urbanization-led land cover change and its impact on local climate using time series model: a study on Dhaka city The Journal of Population and Sustainability urbanization land cover climate change time series model Dhaka city |
author_facet |
Ripan Debnath |
author_sort |
Ripan Debnath |
title |
Anticipating urbanization-led land cover change and its impact on local climate using time series model: a study on Dhaka city |
title_short |
Anticipating urbanization-led land cover change and its impact on local climate using time series model: a study on Dhaka city |
title_full |
Anticipating urbanization-led land cover change and its impact on local climate using time series model: a study on Dhaka city |
title_fullStr |
Anticipating urbanization-led land cover change and its impact on local climate using time series model: a study on Dhaka city |
title_full_unstemmed |
Anticipating urbanization-led land cover change and its impact on local climate using time series model: a study on Dhaka city |
title_sort |
anticipating urbanization-led land cover change and its impact on local climate using time series model: a study on dhaka city |
publisher |
The White Horse Press |
series |
The Journal of Population and Sustainability |
issn |
2398-5488 2398-5496 |
publishDate |
2020-06-01 |
description |
Urbanization-led changes in natural landscape often result in environmental degradation and subsequently contribute to local climate variability. Therefore, apart from global climate change, Dhaka city’s ongoing rapid urban growth may result in altering future local climate patterns significantly. This study explores transition relationships between urbanization (population), land cover, and climate (temperature) of Dhaka city beginning in 1975 through to forecast scenarios up to 2035. Satellite image, geographic, demographic, and climatic data were analyzed. Change in core urban land cover (area) was regarded as a function of population growth and was modeled using linear regression technique. The study developed and validated a time series (ARIMA) model for predicting mean maximum temperature change where (forecasted) land cover scenarios were regressors. Throughout the studied period, the city exhibited an increasing urbanization trend that indicated persistent growth of core urban land cover in future. As a result, the city’s mean maximum temperature was found likely to increase by around 1.5-degree Celsius during 2016–2035 on average from that of observed 1996–2015 period. It is expected that findings of this study may help in recognizing urbanization-led climate change easily, which is crucial to effective climate change management actions and urban planning.
|
topic |
urbanization land cover climate change time series model Dhaka city |
url |
https://whp-journals.co.uk/JPS/article/view/649 |
work_keys_str_mv |
AT ripandebnath anticipatingurbanizationledlandcoverchangeanditsimpactonlocalclimateusingtimeseriesmodelastudyondhakacity |
_version_ |
1717817635826040832 |