Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems
In this article, we prove the existence and multiplicity of nontrivial solutions for the nonperiodic perturbed fractional Hamiltonian systems $$\displaylines{ -_{t}D^{\alpha}_{\infty}(_{-\infty}D^{\alpha}_{t}x(t)) -\lambda L(t)\cdot x(t)+\nabla W(t,x(t))=f(t),\cr x\in H^{\alpha}(\mathbb{R}, \mat...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2017-03-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2017/93/abstr.html |
id |
doaj-cf4b45c6cdbb41858f375e484741856e |
---|---|
record_format |
Article |
spelling |
doaj-cf4b45c6cdbb41858f375e484741856e2020-11-24T20:59:09ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912017-03-01201793,113Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systemsAbderrazek Benhassine0 High Institut of Informatics and Math., Tunisia In this article, we prove the existence and multiplicity of nontrivial solutions for the nonperiodic perturbed fractional Hamiltonian systems $$\displaylines{ -_{t}D^{\alpha}_{\infty}(_{-\infty}D^{\alpha}_{t}x(t)) -\lambda L(t)\cdot x(t)+\nabla W(t,x(t))=f(t),\cr x\in H^{\alpha}(\mathbb{R}, \mathbb{R}^{N}), }$$ where $\alpha \in (1/2 , 1],\; \lambda> 0 $ is a parameter, $t\in \mathbb{R}, x\in \mathbb{R}^N$, ${}_{-\infty}D^{\alpha}_{t}$ and ${}_{t}D^{\alpha}_{\infty}$ are left and right Liouville-Weyl fractional derivatives of order $\alpha$ on the whole axis $\mathbb{R}$ respectively, the matrix $L(t)$ is not necessary positive definite for all $t\in \mathbb{R}$ nor coercive, $W \in C^{1}(\mathbb{R}\times\mathbb{R}^{N},\mathbb{R})$ and $f\in L^{2}(\mathbb{R},\mathbb{R}^{N})\backslash\{0\}$ small enough. Replacing the Ambrosetti-Rabinowitz Condition by general superquadratic assumpt ions, we establish the existence and multiplicity results for the above system. Some examples are also given to illustrate our results.http://ejde.math.txstate.edu/Volumes/2017/93/abstr.htmlFractional Hamiltonian systemscritical pointvariational methods |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Abderrazek Benhassine |
spellingShingle |
Abderrazek Benhassine Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems Electronic Journal of Differential Equations Fractional Hamiltonian systems critical point variational methods |
author_facet |
Abderrazek Benhassine |
author_sort |
Abderrazek Benhassine |
title |
Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems |
title_short |
Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems |
title_full |
Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems |
title_fullStr |
Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems |
title_full_unstemmed |
Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems |
title_sort |
multiplicity of solutions for nonperiodic perturbed fractional hamiltonian systems |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2017-03-01 |
description |
In this article, we prove the existence and multiplicity of nontrivial
solutions for the nonperiodic perturbed fractional Hamiltonian systems
$$\displaylines{
-_{t}D^{\alpha}_{\infty}(_{-\infty}D^{\alpha}_{t}x(t))
-\lambda L(t)\cdot x(t)+\nabla W(t,x(t))=f(t),\cr
x\in H^{\alpha}(\mathbb{R}, \mathbb{R}^{N}),
}$$
where $\alpha \in (1/2 , 1],\; \lambda> 0 $ is a parameter,
$t\in \mathbb{R}, x\in \mathbb{R}^N$, ${}_{-\infty}D^{\alpha}_{t}$ and
${}_{t}D^{\alpha}_{\infty}$ are left and right Liouville-Weyl fractional
derivatives of order $\alpha$ on the whole axis $\mathbb{R}$ respectively,
the matrix $L(t)$ is not necessary positive definite for all $t\in \mathbb{R}$
nor coercive, $W \in C^{1}(\mathbb{R}\times\mathbb{R}^{N},\mathbb{R})$ and
$f\in L^{2}(\mathbb{R},\mathbb{R}^{N})\backslash\{0\}$ small enough.
Replacing the Ambrosetti-Rabinowitz Condition by general superquadratic
assumpt ions, we establish the existence and multiplicity results for the
above system. Some examples are also given to illustrate our results. |
topic |
Fractional Hamiltonian systems critical point variational methods |
url |
http://ejde.math.txstate.edu/Volumes/2017/93/abstr.html |
work_keys_str_mv |
AT abderrazekbenhassine multiplicityofsolutionsfornonperiodicperturbedfractionalhamiltoniansystems |
_version_ |
1716783535112585216 |