Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems

In this article, we prove the existence and multiplicity of nontrivial solutions for the nonperiodic perturbed fractional Hamiltonian systems $$\displaylines{ -_{t}D^{\alpha}_{\infty}(_{-\infty}D^{\alpha}_{t}x(t)) -\lambda L(t)\cdot x(t)+\nabla W(t,x(t))=f(t),\cr x\in H^{\alpha}(\mathbb{R}, \mat...

Full description

Bibliographic Details
Main Author: Abderrazek Benhassine
Format: Article
Language:English
Published: Texas State University 2017-03-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2017/93/abstr.html
id doaj-cf4b45c6cdbb41858f375e484741856e
record_format Article
spelling doaj-cf4b45c6cdbb41858f375e484741856e2020-11-24T20:59:09ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912017-03-01201793,113Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systemsAbderrazek Benhassine0 High Institut of Informatics and Math., Tunisia In this article, we prove the existence and multiplicity of nontrivial solutions for the nonperiodic perturbed fractional Hamiltonian systems $$\displaylines{ -_{t}D^{\alpha}_{\infty}(_{-\infty}D^{\alpha}_{t}x(t)) -\lambda L(t)\cdot x(t)+\nabla W(t,x(t))=f(t),\cr x\in H^{\alpha}(\mathbb{R}, \mathbb{R}^{N}), }$$ where $\alpha \in (1/2 , 1],\; \lambda> 0 $ is a parameter, $t\in \mathbb{R}, x\in \mathbb{R}^N$, ${}_{-\infty}D^{\alpha}_{t}$ and ${}_{t}D^{\alpha}_{\infty}$ are left and right Liouville-Weyl fractional derivatives of order $\alpha$ on the whole axis $\mathbb{R}$ respectively, the matrix $L(t)$ is not necessary positive definite for all $t\in \mathbb{R}$ nor coercive, $W \in C^{1}(\mathbb{R}\times\mathbb{R}^{N},\mathbb{R})$ and $f\in L^{2}(\mathbb{R},\mathbb{R}^{N})\backslash\{0\}$ small enough. Replacing the Ambrosetti-Rabinowitz Condition by general superquadratic assumpt ions, we establish the existence and multiplicity results for the above system. Some examples are also given to illustrate our results.http://ejde.math.txstate.edu/Volumes/2017/93/abstr.htmlFractional Hamiltonian systemscritical pointvariational methods
collection DOAJ
language English
format Article
sources DOAJ
author Abderrazek Benhassine
spellingShingle Abderrazek Benhassine
Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems
Electronic Journal of Differential Equations
Fractional Hamiltonian systems
critical point
variational methods
author_facet Abderrazek Benhassine
author_sort Abderrazek Benhassine
title Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems
title_short Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems
title_full Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems
title_fullStr Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems
title_full_unstemmed Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems
title_sort multiplicity of solutions for nonperiodic perturbed fractional hamiltonian systems
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2017-03-01
description In this article, we prove the existence and multiplicity of nontrivial solutions for the nonperiodic perturbed fractional Hamiltonian systems $$\displaylines{ -_{t}D^{\alpha}_{\infty}(_{-\infty}D^{\alpha}_{t}x(t)) -\lambda L(t)\cdot x(t)+\nabla W(t,x(t))=f(t),\cr x\in H^{\alpha}(\mathbb{R}, \mathbb{R}^{N}), }$$ where $\alpha \in (1/2 , 1],\; \lambda> 0 $ is a parameter, $t\in \mathbb{R}, x\in \mathbb{R}^N$, ${}_{-\infty}D^{\alpha}_{t}$ and ${}_{t}D^{\alpha}_{\infty}$ are left and right Liouville-Weyl fractional derivatives of order $\alpha$ on the whole axis $\mathbb{R}$ respectively, the matrix $L(t)$ is not necessary positive definite for all $t\in \mathbb{R}$ nor coercive, $W \in C^{1}(\mathbb{R}\times\mathbb{R}^{N},\mathbb{R})$ and $f\in L^{2}(\mathbb{R},\mathbb{R}^{N})\backslash\{0\}$ small enough. Replacing the Ambrosetti-Rabinowitz Condition by general superquadratic assumpt ions, we establish the existence and multiplicity results for the above system. Some examples are also given to illustrate our results.
topic Fractional Hamiltonian systems
critical point
variational methods
url http://ejde.math.txstate.edu/Volumes/2017/93/abstr.html
work_keys_str_mv AT abderrazekbenhassine multiplicityofsolutionsfornonperiodicperturbedfractionalhamiltoniansystems
_version_ 1716783535112585216