Partition functions on slightly squashed spheres and flux parameters
Abstract We argue that the conjectural relation between the subleading term in the small-squashing expansion of the free energy of general three-dimensional CFTs on squashed spheres and the stress-tensor three-point charge t 4 proposed in arXiv:1808.02052 : F S ε 3 3 0 = 1 630 π 4 C T t 4 $$ {F}_{{\...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-04-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP04(2020)123 |
id |
doaj-cf3751db9dbb4d218169ba563ad70c31 |
---|---|
record_format |
Article |
spelling |
doaj-cf3751db9dbb4d218169ba563ad70c312020-11-25T03:03:24ZengSpringerOpenJournal of High Energy Physics1029-84792020-04-012020415110.1007/JHEP04(2020)123Partition functions on slightly squashed spheres and flux parametersPablo Bueno0Pablo A. Cano1Robie A. Hennigar2Victor A. Penas3Alejandro Ruipérez4Instituto Balseiro, Centro Atómico BarilocheInstituut voor Theoretische Fysica, KU LeuvenDepartment of Mathematics and Statistics, Memorial University of NewfoundlandInstituto Balseiro, Centro Atómico BarilocheInstituto de Física Teórica UAM/CSIC, C/Nicolás CabreraAbstract We argue that the conjectural relation between the subleading term in the small-squashing expansion of the free energy of general three-dimensional CFTs on squashed spheres and the stress-tensor three-point charge t 4 proposed in arXiv:1808.02052 : F S ε 3 3 0 = 1 630 π 4 C T t 4 $$ {F}_{{\mathbbm{S}}_{\varepsilon}^3}^{(3)}(0)=\frac{1}{630}{\pi}^4{C}_T{t}_4 $$ , holds for an infinite family of holographic higher-curvature theories. Using holographic calculations for quartic and quintic Generalized Quasi-topological gravities and general-order Quasi-topological gravities, we identify an analogous analytic relation between such term and the charges t2 and t4 valid for five-dimensional theories: F S ε 5 3 0 = 2 15 π 6 C T 1 + 3 40 t 2 + 23 630 t 4 $$ {F}_{{\mathbbm{S}}_{\varepsilon}^5}^{(3)}(0)=\frac{2}{15}{\pi}^6{C}_T\left[1+\frac{3}{40}{t}_2+\frac{23}{630}{t}_4\right] $$ . We test both conjectures using new analytic and numerical results for conformally-coupled scalars and free fermions, finding perfect agreement.http://link.springer.com/article/10.1007/JHEP04(2020)123AdS-CFT CorrespondenceConformal Field TheoryClassical Theories of Gravity |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Pablo Bueno Pablo A. Cano Robie A. Hennigar Victor A. Penas Alejandro Ruipérez |
spellingShingle |
Pablo Bueno Pablo A. Cano Robie A. Hennigar Victor A. Penas Alejandro Ruipérez Partition functions on slightly squashed spheres and flux parameters Journal of High Energy Physics AdS-CFT Correspondence Conformal Field Theory Classical Theories of Gravity |
author_facet |
Pablo Bueno Pablo A. Cano Robie A. Hennigar Victor A. Penas Alejandro Ruipérez |
author_sort |
Pablo Bueno |
title |
Partition functions on slightly squashed spheres and flux parameters |
title_short |
Partition functions on slightly squashed spheres and flux parameters |
title_full |
Partition functions on slightly squashed spheres and flux parameters |
title_fullStr |
Partition functions on slightly squashed spheres and flux parameters |
title_full_unstemmed |
Partition functions on slightly squashed spheres and flux parameters |
title_sort |
partition functions on slightly squashed spheres and flux parameters |
publisher |
SpringerOpen |
series |
Journal of High Energy Physics |
issn |
1029-8479 |
publishDate |
2020-04-01 |
description |
Abstract We argue that the conjectural relation between the subleading term in the small-squashing expansion of the free energy of general three-dimensional CFTs on squashed spheres and the stress-tensor three-point charge t 4 proposed in arXiv:1808.02052 : F S ε 3 3 0 = 1 630 π 4 C T t 4 $$ {F}_{{\mathbbm{S}}_{\varepsilon}^3}^{(3)}(0)=\frac{1}{630}{\pi}^4{C}_T{t}_4 $$ , holds for an infinite family of holographic higher-curvature theories. Using holographic calculations for quartic and quintic Generalized Quasi-topological gravities and general-order Quasi-topological gravities, we identify an analogous analytic relation between such term and the charges t2 and t4 valid for five-dimensional theories: F S ε 5 3 0 = 2 15 π 6 C T 1 + 3 40 t 2 + 23 630 t 4 $$ {F}_{{\mathbbm{S}}_{\varepsilon}^5}^{(3)}(0)=\frac{2}{15}{\pi}^6{C}_T\left[1+\frac{3}{40}{t}_2+\frac{23}{630}{t}_4\right] $$ . We test both conjectures using new analytic and numerical results for conformally-coupled scalars and free fermions, finding perfect agreement. |
topic |
AdS-CFT Correspondence Conformal Field Theory Classical Theories of Gravity |
url |
http://link.springer.com/article/10.1007/JHEP04(2020)123 |
work_keys_str_mv |
AT pablobueno partitionfunctionsonslightlysquashedspheresandfluxparameters AT pabloacano partitionfunctionsonslightlysquashedspheresandfluxparameters AT robieahennigar partitionfunctionsonslightlysquashedspheresandfluxparameters AT victorapenas partitionfunctionsonslightlysquashedspheresandfluxparameters AT alejandroruiperez partitionfunctionsonslightlysquashedspheresandfluxparameters |
_version_ |
1724685898056990720 |