Partition functions on slightly squashed spheres and flux parameters

Abstract We argue that the conjectural relation between the subleading term in the small-squashing expansion of the free energy of general three-dimensional CFTs on squashed spheres and the stress-tensor three-point charge t 4 proposed in arXiv:1808.02052 : F S ε 3 3 0 = 1 630 π 4 C T t 4 $$ {F}_{{\...

Full description

Bibliographic Details
Main Authors: Pablo Bueno, Pablo A. Cano, Robie A. Hennigar, Victor A. Penas, Alejandro Ruipérez
Format: Article
Language:English
Published: SpringerOpen 2020-04-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP04(2020)123
id doaj-cf3751db9dbb4d218169ba563ad70c31
record_format Article
spelling doaj-cf3751db9dbb4d218169ba563ad70c312020-11-25T03:03:24ZengSpringerOpenJournal of High Energy Physics1029-84792020-04-012020415110.1007/JHEP04(2020)123Partition functions on slightly squashed spheres and flux parametersPablo Bueno0Pablo A. Cano1Robie A. Hennigar2Victor A. Penas3Alejandro Ruipérez4Instituto Balseiro, Centro Atómico BarilocheInstituut voor Theoretische Fysica, KU LeuvenDepartment of Mathematics and Statistics, Memorial University of NewfoundlandInstituto Balseiro, Centro Atómico BarilocheInstituto de Física Teórica UAM/CSIC, C/Nicolás CabreraAbstract We argue that the conjectural relation between the subleading term in the small-squashing expansion of the free energy of general three-dimensional CFTs on squashed spheres and the stress-tensor three-point charge t 4 proposed in arXiv:1808.02052 : F S ε 3 3 0 = 1 630 π 4 C T t 4 $$ {F}_{{\mathbbm{S}}_{\varepsilon}^3}^{(3)}(0)=\frac{1}{630}{\pi}^4{C}_T{t}_4 $$ , holds for an infinite family of holographic higher-curvature theories. Using holographic calculations for quartic and quintic Generalized Quasi-topological gravities and general-order Quasi-topological gravities, we identify an analogous analytic relation between such term and the charges t2 and t4 valid for five-dimensional theories: F S ε 5 3 0 = 2 15 π 6 C T 1 + 3 40 t 2 + 23 630 t 4 $$ {F}_{{\mathbbm{S}}_{\varepsilon}^5}^{(3)}(0)=\frac{2}{15}{\pi}^6{C}_T\left[1+\frac{3}{40}{t}_2+\frac{23}{630}{t}_4\right] $$ . We test both conjectures using new analytic and numerical results for conformally-coupled scalars and free fermions, finding perfect agreement.http://link.springer.com/article/10.1007/JHEP04(2020)123AdS-CFT CorrespondenceConformal Field TheoryClassical Theories of Gravity
collection DOAJ
language English
format Article
sources DOAJ
author Pablo Bueno
Pablo A. Cano
Robie A. Hennigar
Victor A. Penas
Alejandro Ruipérez
spellingShingle Pablo Bueno
Pablo A. Cano
Robie A. Hennigar
Victor A. Penas
Alejandro Ruipérez
Partition functions on slightly squashed spheres and flux parameters
Journal of High Energy Physics
AdS-CFT Correspondence
Conformal Field Theory
Classical Theories of Gravity
author_facet Pablo Bueno
Pablo A. Cano
Robie A. Hennigar
Victor A. Penas
Alejandro Ruipérez
author_sort Pablo Bueno
title Partition functions on slightly squashed spheres and flux parameters
title_short Partition functions on slightly squashed spheres and flux parameters
title_full Partition functions on slightly squashed spheres and flux parameters
title_fullStr Partition functions on slightly squashed spheres and flux parameters
title_full_unstemmed Partition functions on slightly squashed spheres and flux parameters
title_sort partition functions on slightly squashed spheres and flux parameters
publisher SpringerOpen
series Journal of High Energy Physics
issn 1029-8479
publishDate 2020-04-01
description Abstract We argue that the conjectural relation between the subleading term in the small-squashing expansion of the free energy of general three-dimensional CFTs on squashed spheres and the stress-tensor three-point charge t 4 proposed in arXiv:1808.02052 : F S ε 3 3 0 = 1 630 π 4 C T t 4 $$ {F}_{{\mathbbm{S}}_{\varepsilon}^3}^{(3)}(0)=\frac{1}{630}{\pi}^4{C}_T{t}_4 $$ , holds for an infinite family of holographic higher-curvature theories. Using holographic calculations for quartic and quintic Generalized Quasi-topological gravities and general-order Quasi-topological gravities, we identify an analogous analytic relation between such term and the charges t2 and t4 valid for five-dimensional theories: F S ε 5 3 0 = 2 15 π 6 C T 1 + 3 40 t 2 + 23 630 t 4 $$ {F}_{{\mathbbm{S}}_{\varepsilon}^5}^{(3)}(0)=\frac{2}{15}{\pi}^6{C}_T\left[1+\frac{3}{40}{t}_2+\frac{23}{630}{t}_4\right] $$ . We test both conjectures using new analytic and numerical results for conformally-coupled scalars and free fermions, finding perfect agreement.
topic AdS-CFT Correspondence
Conformal Field Theory
Classical Theories of Gravity
url http://link.springer.com/article/10.1007/JHEP04(2020)123
work_keys_str_mv AT pablobueno partitionfunctionsonslightlysquashedspheresandfluxparameters
AT pabloacano partitionfunctionsonslightlysquashedspheresandfluxparameters
AT robieahennigar partitionfunctionsonslightlysquashedspheresandfluxparameters
AT victorapenas partitionfunctionsonslightlysquashedspheresandfluxparameters
AT alejandroruiperez partitionfunctionsonslightlysquashedspheresandfluxparameters
_version_ 1724685898056990720