Linear Vibration Analysis of Shells Using a Seven-Parameter Spectral/<i>hp</i> Finite Element Model
In this paper, a seven-parameter spectral/<i>hp</i> finite element model to obtain natural frequencies in shell type structures is presented. This model accounts for constant and variable thickness of shell structures. The finite element model is based on a Higher-order Shear Deformation...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/10/15/5102 |
id |
doaj-cf2f73993ff5498f90d5af4b31c70826 |
---|---|
record_format |
Article |
spelling |
doaj-cf2f73993ff5498f90d5af4b31c708262020-11-25T03:28:18ZengMDPI AGApplied Sciences2076-34172020-07-01105102510210.3390/app10155102Linear Vibration Analysis of Shells Using a Seven-Parameter Spectral/<i>hp</i> Finite Element ModelCarlos Valencia Murillo0Miguel Gutierrez Rivera1Junuthula N. Reddy2Department of Mechanical Engineering, University of Guanajuato, Salamanca, Guanajuato 36885, MexicoDepartment of Mechanical Engineering, University of Guanajuato, Salamanca, Guanajuato 36885, MexicoAdvanced Computational Mechanics Lab., J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USAIn this paper, a seven-parameter spectral/<i>hp</i> finite element model to obtain natural frequencies in shell type structures is presented. This model accounts for constant and variable thickness of shell structures. The finite element model is based on a Higher-order Shear Deformation Theory, and the equations of motion are obtained by means of Hamilton’s principle. Analysis is performed for isotropic linear elastic shells. A validation of the formulation is made by comparing the present results with those reported in the literature and with simulations in the commercial code ANSYS. Finally, results for shell like structures with variable thickness are presented, and their behavior for different ratios <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>/</mo> <mi>h</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>r</mi> </mrow> </semantics> </math> </inline-formula> is studied.https://www.mdpi.com/2076-3417/10/15/51027-parameter shellfinite element modelnatural frequenciesnumerical results |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Carlos Valencia Murillo Miguel Gutierrez Rivera Junuthula N. Reddy |
spellingShingle |
Carlos Valencia Murillo Miguel Gutierrez Rivera Junuthula N. Reddy Linear Vibration Analysis of Shells Using a Seven-Parameter Spectral/<i>hp</i> Finite Element Model Applied Sciences 7-parameter shell finite element model natural frequencies numerical results |
author_facet |
Carlos Valencia Murillo Miguel Gutierrez Rivera Junuthula N. Reddy |
author_sort |
Carlos Valencia Murillo |
title |
Linear Vibration Analysis of Shells Using a Seven-Parameter Spectral/<i>hp</i> Finite Element Model |
title_short |
Linear Vibration Analysis of Shells Using a Seven-Parameter Spectral/<i>hp</i> Finite Element Model |
title_full |
Linear Vibration Analysis of Shells Using a Seven-Parameter Spectral/<i>hp</i> Finite Element Model |
title_fullStr |
Linear Vibration Analysis of Shells Using a Seven-Parameter Spectral/<i>hp</i> Finite Element Model |
title_full_unstemmed |
Linear Vibration Analysis of Shells Using a Seven-Parameter Spectral/<i>hp</i> Finite Element Model |
title_sort |
linear vibration analysis of shells using a seven-parameter spectral/<i>hp</i> finite element model |
publisher |
MDPI AG |
series |
Applied Sciences |
issn |
2076-3417 |
publishDate |
2020-07-01 |
description |
In this paper, a seven-parameter spectral/<i>hp</i> finite element model to obtain natural frequencies in shell type structures is presented. This model accounts for constant and variable thickness of shell structures. The finite element model is based on a Higher-order Shear Deformation Theory, and the equations of motion are obtained by means of Hamilton’s principle. Analysis is performed for isotropic linear elastic shells. A validation of the formulation is made by comparing the present results with those reported in the literature and with simulations in the commercial code ANSYS. Finally, results for shell like structures with variable thickness are presented, and their behavior for different ratios <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>/</mo> <mi>h</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>r</mi> </mrow> </semantics> </math> </inline-formula> is studied. |
topic |
7-parameter shell finite element model natural frequencies numerical results |
url |
https://www.mdpi.com/2076-3417/10/15/5102 |
work_keys_str_mv |
AT carlosvalenciamurillo linearvibrationanalysisofshellsusingasevenparameterspectralihpifiniteelementmodel AT miguelgutierrezrivera linearvibrationanalysisofshellsusingasevenparameterspectralihpifiniteelementmodel AT junuthulanreddy linearvibrationanalysisofshellsusingasevenparameterspectralihpifiniteelementmodel |
_version_ |
1724585024209027072 |