Wavelets in Recognition of Bird Sounds
<p/> <p>This paper presents a novel method to recognize inharmonic and transient bird sounds efficiently. The recognition algorithm consists of feature extraction using wavelet decomposition and recognition using either supervised or unsupervised classifier. The proposed method was teste...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2007-01-01
|
Series: | EURASIP Journal on Advances in Signal Processing |
Online Access: | http://asp.eurasipjournals.com/content/2007/051806 |
id |
doaj-cf153435a7d240938a6eee5ada869d27 |
---|---|
record_format |
Article |
spelling |
doaj-cf153435a7d240938a6eee5ada869d272020-11-24T21:52:52ZengSpringerOpenEURASIP Journal on Advances in Signal Processing1687-61721687-61802007-01-0120071051806Wavelets in Recognition of Bird SoundsSelin ArjaTurunen JariTanttu Juha T<p/> <p>This paper presents a novel method to recognize inharmonic and transient bird sounds efficiently. The recognition algorithm consists of feature extraction using wavelet decomposition and recognition using either supervised or unsupervised classifier. The proposed method was tested on sounds of eight bird species of which five species have inharmonic sounds and three reference species have harmonic sounds. Inharmonic sounds are not well matched to the conventional spectral analysis methods, because the spectral domain does not include any visible trajectories that computer can track and identify. Thus, the wavelet analysis was selected due to its ability to preserve both frequency and temporal information, and its ability to analyze signals which contain discontinuities and sharp spikes. The shift invariant feature vectors calculated from the wavelet coefficients were used as inputs of two neural networks: the unsupervised self-organizing map (SOM) and the supervised multilayer perceptron (MLP). The results were encouraging: the SOM network recognized 78% and the MLP network 96% of the test sounds correctly.</p> http://asp.eurasipjournals.com/content/2007/051806 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Selin Arja Turunen Jari Tanttu Juha T |
spellingShingle |
Selin Arja Turunen Jari Tanttu Juha T Wavelets in Recognition of Bird Sounds EURASIP Journal on Advances in Signal Processing |
author_facet |
Selin Arja Turunen Jari Tanttu Juha T |
author_sort |
Selin Arja |
title |
Wavelets in Recognition of Bird Sounds |
title_short |
Wavelets in Recognition of Bird Sounds |
title_full |
Wavelets in Recognition of Bird Sounds |
title_fullStr |
Wavelets in Recognition of Bird Sounds |
title_full_unstemmed |
Wavelets in Recognition of Bird Sounds |
title_sort |
wavelets in recognition of bird sounds |
publisher |
SpringerOpen |
series |
EURASIP Journal on Advances in Signal Processing |
issn |
1687-6172 1687-6180 |
publishDate |
2007-01-01 |
description |
<p/> <p>This paper presents a novel method to recognize inharmonic and transient bird sounds efficiently. The recognition algorithm consists of feature extraction using wavelet decomposition and recognition using either supervised or unsupervised classifier. The proposed method was tested on sounds of eight bird species of which five species have inharmonic sounds and three reference species have harmonic sounds. Inharmonic sounds are not well matched to the conventional spectral analysis methods, because the spectral domain does not include any visible trajectories that computer can track and identify. Thus, the wavelet analysis was selected due to its ability to preserve both frequency and temporal information, and its ability to analyze signals which contain discontinuities and sharp spikes. The shift invariant feature vectors calculated from the wavelet coefficients were used as inputs of two neural networks: the unsupervised self-organizing map (SOM) and the supervised multilayer perceptron (MLP). The results were encouraging: the SOM network recognized 78% and the MLP network 96% of the test sounds correctly.</p> |
url |
http://asp.eurasipjournals.com/content/2007/051806 |
work_keys_str_mv |
AT selinarja waveletsinrecognitionofbirdsounds AT turunenjari waveletsinrecognitionofbirdsounds AT tanttujuhat waveletsinrecognitionofbirdsounds |
_version_ |
1725874370577956864 |