DeepACSON automated segmentation of white matter in 3D electron microscopy

With DeepACSON, Abdollahzadeh et al. combines existing deep learning-based methods for semantic segmentation and a novel shape decomposition technique for the instance segmentation. The pipeline is used to segment low-resolution 3D-EM datasets allowing quantification of white matter morphology in la...

Full description

Bibliographic Details
Main Authors: Ali Abdollahzadeh, Ilya Belevich, Eija Jokitalo, Alejandra Sierra, Jussi Tohka
Format: Article
Language:English
Published: Nature Publishing Group 2021-02-01
Series:Communications Biology
Online Access:https://doi.org/10.1038/s42003-021-01699-w
id doaj-ceef10eba1c14eabaaaea963abe3d645
record_format Article
spelling doaj-ceef10eba1c14eabaaaea963abe3d6452021-02-14T12:27:29ZengNature Publishing GroupCommunications Biology2399-36422021-02-014111410.1038/s42003-021-01699-wDeepACSON automated segmentation of white matter in 3D electron microscopyAli Abdollahzadeh0Ilya Belevich1Eija Jokitalo2Alejandra Sierra3Jussi Tohka4A. I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandElectron Microscopy Unit, Institute of Biotechnology, University of HelsinkiElectron Microscopy Unit, Institute of Biotechnology, University of HelsinkiA. I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandA. I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandWith DeepACSON, Abdollahzadeh et al. combines existing deep learning-based methods for semantic segmentation and a novel shape decomposition technique for the instance segmentation. The pipeline is used to segment low-resolution 3D-EM datasets allowing quantification of white matter morphology in large fields-of-view.https://doi.org/10.1038/s42003-021-01699-w
collection DOAJ
language English
format Article
sources DOAJ
author Ali Abdollahzadeh
Ilya Belevich
Eija Jokitalo
Alejandra Sierra
Jussi Tohka
spellingShingle Ali Abdollahzadeh
Ilya Belevich
Eija Jokitalo
Alejandra Sierra
Jussi Tohka
DeepACSON automated segmentation of white matter in 3D electron microscopy
Communications Biology
author_facet Ali Abdollahzadeh
Ilya Belevich
Eija Jokitalo
Alejandra Sierra
Jussi Tohka
author_sort Ali Abdollahzadeh
title DeepACSON automated segmentation of white matter in 3D electron microscopy
title_short DeepACSON automated segmentation of white matter in 3D electron microscopy
title_full DeepACSON automated segmentation of white matter in 3D electron microscopy
title_fullStr DeepACSON automated segmentation of white matter in 3D electron microscopy
title_full_unstemmed DeepACSON automated segmentation of white matter in 3D electron microscopy
title_sort deepacson automated segmentation of white matter in 3d electron microscopy
publisher Nature Publishing Group
series Communications Biology
issn 2399-3642
publishDate 2021-02-01
description With DeepACSON, Abdollahzadeh et al. combines existing deep learning-based methods for semantic segmentation and a novel shape decomposition technique for the instance segmentation. The pipeline is used to segment low-resolution 3D-EM datasets allowing quantification of white matter morphology in large fields-of-view.
url https://doi.org/10.1038/s42003-021-01699-w
work_keys_str_mv AT aliabdollahzadeh deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy
AT ilyabelevich deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy
AT eijajokitalo deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy
AT alejandrasierra deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy
AT jussitohka deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy
_version_ 1724270453307998208