Fault Simulation and Online Diagnosis of Blade Damage of Large-Scale Wind Turbines

Damaged wind turbine (WT) blades have an imbalanced load and abnormal vibration, which affects their safe and stable operation or even results in blade rupture. To solve this problem, this study proposes a new method to detect damage in WT blades using wavelet packet energy spectrum analysis and ope...

Full description

Bibliographic Details
Main Authors: Feng Gao, Xiaojiang Wu, Qiang Liu, Juncheng Liu, Xiyun Yang
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/3/522
Description
Summary:Damaged wind turbine (WT) blades have an imbalanced load and abnormal vibration, which affects their safe and stable operation or even results in blade rupture. To solve this problem, this study proposes a new method to detect damage in WT blades using wavelet packet energy spectrum analysis and operational modal analysis. First, a wavelet packet transform is used to analyze the tip displacement of the blades to obtain the energy spectrum. The damage is detected preliminarily based on the energy change in different frequency bands. Subsequently, an operational modal analysis method is used to obtain the modal parameters of the blade sections and the damage is located based on the modal strain energy change ratio (MSECR). Finally, the professional WT simulation software GH (Garrad Hassan) Bladed is used to simulate the blade damage and the results are verified by developing an online fault diagnosis platform integrated with MATLAB. The results show that the proposed method is able to diagnose and locate the damage accurately and provide a basis for further research of online damage diagnosis for WT blades.
ISSN:1996-1073