Theoretical and experimental analysis of thermal energy management system of air source self-powered electric gas generator

In order to solve the problem that the auxiliary equipment of electric gas turbine can operate only by relying on external power, and realize the purpose that auxiliary equipment of electric gas turbine can operate independently without the external power grid, in this research, a management system...

Full description

Bibliographic Details
Main Authors: Liu Hui, Zhang Zhihao, Wu Shuang
Format: Article
Language:English
Published: VINCA Institute of Nuclear Sciences 2020-01-01
Series:Thermal Science
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0354-9836/2020/0354-98362000131L.pdf
Description
Summary:In order to solve the problem that the auxiliary equipment of electric gas turbine can operate only by relying on external power, and realize the purpose that auxiliary equipment of electric gas turbine can operate independently without the external power grid, in this research, a management system of air source self-powered electric gas generator is proposed. Firstly, the process of the thermal energy management system of the air source self-powered electric gas generator is introduced, and the thermodynamic theory of the thermal energy management system of the air source self-powered electric gas generator is analyzed. Then, the experimental conditions of air source self-powered electric gas generator are introduced. Finally, the results of variable speed and terminal variable flow in heating condition and terminal variable flow in cooling condition of the thermal energy management system of air source self-powered electric gas generator are analyzed. The results show that whether the thermal energy management system of air source self-powered electric gas generator studied in this research is in heating or cooling conditions, both the output power of the engine and the power of the compressor increase with the increase of the rotating speed. It can be concluded from the variable flow results in heating conditions that the smaller the end flow is, the smaller the output power of the engine will be. In this way, the loss of heat transfer efficiency of the plate can be reduced as much as possible, and the users’ demand for heat can be met.
ISSN:0354-9836