Extreme Wind Speeds Retrieval Using Sentinel-1 IW Mode SAR Data

With the improvement in microwave radar technology, spaceborne synthetic aperture radar (SAR) is widely used to observe the tropical cyclone (TC) wind field. Based on European Space Agency Sentinel-1 Interferometric Wide swath (IW) mode imagery, this paper evaluates the correlation between vertical...

Full description

Bibliographic Details
Main Authors: Yuan Gao, Jian Sun, Jie Zhang, Changlong Guan
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/10/1867
Description
Summary:With the improvement in microwave radar technology, spaceborne synthetic aperture radar (SAR) is widely used to observe the tropical cyclone (TC) wind field. Based on European Space Agency Sentinel-1 Interferometric Wide swath (IW) mode imagery, this paper evaluates the correlation between vertical transmitting–horizontal receiving (VH) polarization signals and extreme ocean surface wind speeds (>40 m/s) under strong TC conditions. A geophysical model function (GMF) Sentinel-1 IW mode wind retrieval model after noise removal (S1IW.NR) was proposed, according to the SAR images of nine TCs and collocated stepped frequency microwave radiometer (SFMR) and soil moisture active passive (SMAP) radiometer wind speed measurements. Through curve fitting and regression correction, the new GMF exploits the relationships between VH-polarization normalized radar cross section, incident angle, and wind speed in each sub-swath and covers wind speeds up to 74 m/s. Based on collocated SAR and SFMR measurements of four TCs, the new GMF was validated in the wind speed range from 2 to 53 m/s. Results show that the correlation coefficient, bias, and root mean squared error were 0.89, −0.89 m/s, and 4.13 m/s, respectively, indicating that extreme winds can be retrieved accurately by the new model. In addition, we investigated the relationship between the S1IW.NR wind retrieval bias and the SFMR-measured rain rate. The S1IW.NR model tended to overestimate wind speeds under high rain rates.
ISSN:2072-4292