A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem

Abstract Let Hn=∑r=1n1/r $H_{n} = \sum_{r=1}^{n} 1/r$ and Hn(x)=∑r=1n1/(r+x) $H_{n}(x) = \sum_{r=1}^{n} 1/(r+x)$. Let ψ(x) $\psi(x)$ denote the digamma function. It is shown that Hn(x)+ψ(x+1) $H_{n}(x) + \psi(x+1)$ is approximated by 12logf(n+x) $\frac{1}{2}\log f(n+x)$, where f(x)=x2+x+13 $f(x) = x...

Full description

Bibliographic Details
Main Author: G. J. O. Jameson
Format: Article
Language:English
Published: SpringerOpen 2019-05-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-019-2104-9
id doaj-ceb41385ed574115b72e2264a23a861f
record_format Article
spelling doaj-ceb41385ed574115b72e2264a23a861f2020-11-25T03:10:56ZengSpringerOpenJournal of Inequalities and Applications1029-242X2019-05-01201911910.1186/s13660-019-2104-9A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problemG. J. O. Jameson0Department of Mathematics and Statistics, Lancaster UniversityAbstract Let Hn=∑r=1n1/r $H_{n} = \sum_{r=1}^{n} 1/r$ and Hn(x)=∑r=1n1/(r+x) $H_{n}(x) = \sum_{r=1}^{n} 1/(r+x)$. Let ψ(x) $\psi(x)$ denote the digamma function. It is shown that Hn(x)+ψ(x+1) $H_{n}(x) + \psi(x+1)$ is approximated by 12logf(n+x) $\frac{1}{2}\log f(n+x)$, where f(x)=x2+x+13 $f(x) = x^{2} + x + \frac{1}{3}$, with error term of order (n+x)−5 $(n+x)^{-5}$. The cases x=0 $x = 0$ and n=0 $n = 0$ equate to estimates for Hn−γ $H_{n} - \gamma $ and ψ(x+1) $\psi(x+1)$ itself. The result is applied to determine exact bounds for a remainder term occurring in the Dirichlet divisor problem.http://link.springer.com/article/10.1186/s13660-019-2104-9Harmonic sumEuler’s constantDigamma functionDivisor problem
collection DOAJ
language English
format Article
sources DOAJ
author G. J. O. Jameson
spellingShingle G. J. O. Jameson
A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem
Journal of Inequalities and Applications
Harmonic sum
Euler’s constant
Digamma function
Divisor problem
author_facet G. J. O. Jameson
author_sort G. J. O. Jameson
title A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem
title_short A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem
title_full A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem
title_fullStr A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem
title_full_unstemmed A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem
title_sort logarithmic estimate for harmonic sums and the digamma function, with an application to the dirichlet divisor problem
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2019-05-01
description Abstract Let Hn=∑r=1n1/r $H_{n} = \sum_{r=1}^{n} 1/r$ and Hn(x)=∑r=1n1/(r+x) $H_{n}(x) = \sum_{r=1}^{n} 1/(r+x)$. Let ψ(x) $\psi(x)$ denote the digamma function. It is shown that Hn(x)+ψ(x+1) $H_{n}(x) + \psi(x+1)$ is approximated by 12logf(n+x) $\frac{1}{2}\log f(n+x)$, where f(x)=x2+x+13 $f(x) = x^{2} + x + \frac{1}{3}$, with error term of order (n+x)−5 $(n+x)^{-5}$. The cases x=0 $x = 0$ and n=0 $n = 0$ equate to estimates for Hn−γ $H_{n} - \gamma $ and ψ(x+1) $\psi(x+1)$ itself. The result is applied to determine exact bounds for a remainder term occurring in the Dirichlet divisor problem.
topic Harmonic sum
Euler’s constant
Digamma function
Divisor problem
url http://link.springer.com/article/10.1186/s13660-019-2104-9
work_keys_str_mv AT gjojameson alogarithmicestimateforharmonicsumsandthedigammafunctionwithanapplicationtothedirichletdivisorproblem
AT gjojameson logarithmicestimateforharmonicsumsandthedigammafunctionwithanapplicationtothedirichletdivisorproblem
_version_ 1724656222711316480