A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem
Abstract Let Hn=∑r=1n1/r $H_{n} = \sum_{r=1}^{n} 1/r$ and Hn(x)=∑r=1n1/(r+x) $H_{n}(x) = \sum_{r=1}^{n} 1/(r+x)$. Let ψ(x) $\psi(x)$ denote the digamma function. It is shown that Hn(x)+ψ(x+1) $H_{n}(x) + \psi(x+1)$ is approximated by 12logf(n+x) $\frac{1}{2}\log f(n+x)$, where f(x)=x2+x+13 $f(x) = x...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-05-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-019-2104-9 |
id |
doaj-ceb41385ed574115b72e2264a23a861f |
---|---|
record_format |
Article |
spelling |
doaj-ceb41385ed574115b72e2264a23a861f2020-11-25T03:10:56ZengSpringerOpenJournal of Inequalities and Applications1029-242X2019-05-01201911910.1186/s13660-019-2104-9A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problemG. J. O. Jameson0Department of Mathematics and Statistics, Lancaster UniversityAbstract Let Hn=∑r=1n1/r $H_{n} = \sum_{r=1}^{n} 1/r$ and Hn(x)=∑r=1n1/(r+x) $H_{n}(x) = \sum_{r=1}^{n} 1/(r+x)$. Let ψ(x) $\psi(x)$ denote the digamma function. It is shown that Hn(x)+ψ(x+1) $H_{n}(x) + \psi(x+1)$ is approximated by 12logf(n+x) $\frac{1}{2}\log f(n+x)$, where f(x)=x2+x+13 $f(x) = x^{2} + x + \frac{1}{3}$, with error term of order (n+x)−5 $(n+x)^{-5}$. The cases x=0 $x = 0$ and n=0 $n = 0$ equate to estimates for Hn−γ $H_{n} - \gamma $ and ψ(x+1) $\psi(x+1)$ itself. The result is applied to determine exact bounds for a remainder term occurring in the Dirichlet divisor problem.http://link.springer.com/article/10.1186/s13660-019-2104-9Harmonic sumEuler’s constantDigamma functionDivisor problem |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
G. J. O. Jameson |
spellingShingle |
G. J. O. Jameson A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem Journal of Inequalities and Applications Harmonic sum Euler’s constant Digamma function Divisor problem |
author_facet |
G. J. O. Jameson |
author_sort |
G. J. O. Jameson |
title |
A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem |
title_short |
A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem |
title_full |
A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem |
title_fullStr |
A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem |
title_full_unstemmed |
A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem |
title_sort |
logarithmic estimate for harmonic sums and the digamma function, with an application to the dirichlet divisor problem |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2019-05-01 |
description |
Abstract Let Hn=∑r=1n1/r $H_{n} = \sum_{r=1}^{n} 1/r$ and Hn(x)=∑r=1n1/(r+x) $H_{n}(x) = \sum_{r=1}^{n} 1/(r+x)$. Let ψ(x) $\psi(x)$ denote the digamma function. It is shown that Hn(x)+ψ(x+1) $H_{n}(x) + \psi(x+1)$ is approximated by 12logf(n+x) $\frac{1}{2}\log f(n+x)$, where f(x)=x2+x+13 $f(x) = x^{2} + x + \frac{1}{3}$, with error term of order (n+x)−5 $(n+x)^{-5}$. The cases x=0 $x = 0$ and n=0 $n = 0$ equate to estimates for Hn−γ $H_{n} - \gamma $ and ψ(x+1) $\psi(x+1)$ itself. The result is applied to determine exact bounds for a remainder term occurring in the Dirichlet divisor problem. |
topic |
Harmonic sum Euler’s constant Digamma function Divisor problem |
url |
http://link.springer.com/article/10.1186/s13660-019-2104-9 |
work_keys_str_mv |
AT gjojameson alogarithmicestimateforharmonicsumsandthedigammafunctionwithanapplicationtothedirichletdivisorproblem AT gjojameson logarithmicestimateforharmonicsumsandthedigammafunctionwithanapplicationtothedirichletdivisorproblem |
_version_ |
1724656222711316480 |