Lifting Dual Connections with the Riemann Extension

Let <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a Riemannian manifold equ...

Full description

Bibliographic Details
Main Author: Stéphane Puechmorel
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/11/2079
id doaj-ceb2208d3bc243f4a8a395aa5983e196
record_format Article
spelling doaj-ceb2208d3bc243f4a8a395aa5983e1962020-11-25T04:00:25ZengMDPI AGMathematics2227-73902020-11-0182079207910.3390/math8112079Lifting Dual Connections with the Riemann ExtensionStéphane Puechmorel0ENAC, Université de Toulouse, 31000 Toulouse, FranceLet <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a Riemannian manifold equipped with a pair of dual connections <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mo>∇</mo><mo>,</mo><msup><mo>∇</mo><mo>*</mo></msup><mo>)</mo></mrow></semantics></math></inline-formula>. Such a structure is known as a statistical manifold since it was defined in the context of information geometry. This paper aims at defining the complete lift of such a structure to the cotangent bundle <inline-formula><math display="inline"><semantics><mrow><msup><mi>T</mi><mo>*</mo></msup><mi>M</mi></mrow></semantics></math></inline-formula> using the Riemannian extension of the Levi-Civita connection of <i>M</i>. In the first section, common tensors are associated with pairs of dual connections, emphasizing the cyclic symmetry property of the so-called skewness tensor. In a second section, the complete lift of this tensor is obtained, allowing the definition of dual connections on <inline-formula><math display="inline"><semantics><mrow><mi>T</mi><msup><mi>T</mi><mo>*</mo></msup><mi>M</mi></mrow></semantics></math></inline-formula> with respect to the Riemannian extension. This work was motivated by the general problem of finding the projective limit of a sequence of a finite-dimensional statistical manifold.https://www.mdpi.com/2227-7390/8/11/2079Information geometrydual connectionsRiemannian extensioncotangent bundle
collection DOAJ
language English
format Article
sources DOAJ
author Stéphane Puechmorel
spellingShingle Stéphane Puechmorel
Lifting Dual Connections with the Riemann Extension
Mathematics
Information geometry
dual connections
Riemannian extension
cotangent bundle
author_facet Stéphane Puechmorel
author_sort Stéphane Puechmorel
title Lifting Dual Connections with the Riemann Extension
title_short Lifting Dual Connections with the Riemann Extension
title_full Lifting Dual Connections with the Riemann Extension
title_fullStr Lifting Dual Connections with the Riemann Extension
title_full_unstemmed Lifting Dual Connections with the Riemann Extension
title_sort lifting dual connections with the riemann extension
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-11-01
description Let <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a Riemannian manifold equipped with a pair of dual connections <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mo>∇</mo><mo>,</mo><msup><mo>∇</mo><mo>*</mo></msup><mo>)</mo></mrow></semantics></math></inline-formula>. Such a structure is known as a statistical manifold since it was defined in the context of information geometry. This paper aims at defining the complete lift of such a structure to the cotangent bundle <inline-formula><math display="inline"><semantics><mrow><msup><mi>T</mi><mo>*</mo></msup><mi>M</mi></mrow></semantics></math></inline-formula> using the Riemannian extension of the Levi-Civita connection of <i>M</i>. In the first section, common tensors are associated with pairs of dual connections, emphasizing the cyclic symmetry property of the so-called skewness tensor. In a second section, the complete lift of this tensor is obtained, allowing the definition of dual connections on <inline-formula><math display="inline"><semantics><mrow><mi>T</mi><msup><mi>T</mi><mo>*</mo></msup><mi>M</mi></mrow></semantics></math></inline-formula> with respect to the Riemannian extension. This work was motivated by the general problem of finding the projective limit of a sequence of a finite-dimensional statistical manifold.
topic Information geometry
dual connections
Riemannian extension
cotangent bundle
url https://www.mdpi.com/2227-7390/8/11/2079
work_keys_str_mv AT stephanepuechmorel liftingdualconnectionswiththeriemannextension
_version_ 1724450697832824832