Lifting Dual Connections with the Riemann Extension
Let <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a Riemannian manifold equ...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-11-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/11/2079 |
id |
doaj-ceb2208d3bc243f4a8a395aa5983e196 |
---|---|
record_format |
Article |
spelling |
doaj-ceb2208d3bc243f4a8a395aa5983e1962020-11-25T04:00:25ZengMDPI AGMathematics2227-73902020-11-0182079207910.3390/math8112079Lifting Dual Connections with the Riemann ExtensionStéphane Puechmorel0ENAC, Université de Toulouse, 31000 Toulouse, FranceLet <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a Riemannian manifold equipped with a pair of dual connections <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mo>∇</mo><mo>,</mo><msup><mo>∇</mo><mo>*</mo></msup><mo>)</mo></mrow></semantics></math></inline-formula>. Such a structure is known as a statistical manifold since it was defined in the context of information geometry. This paper aims at defining the complete lift of such a structure to the cotangent bundle <inline-formula><math display="inline"><semantics><mrow><msup><mi>T</mi><mo>*</mo></msup><mi>M</mi></mrow></semantics></math></inline-formula> using the Riemannian extension of the Levi-Civita connection of <i>M</i>. In the first section, common tensors are associated with pairs of dual connections, emphasizing the cyclic symmetry property of the so-called skewness tensor. In a second section, the complete lift of this tensor is obtained, allowing the definition of dual connections on <inline-formula><math display="inline"><semantics><mrow><mi>T</mi><msup><mi>T</mi><mo>*</mo></msup><mi>M</mi></mrow></semantics></math></inline-formula> with respect to the Riemannian extension. This work was motivated by the general problem of finding the projective limit of a sequence of a finite-dimensional statistical manifold.https://www.mdpi.com/2227-7390/8/11/2079Information geometrydual connectionsRiemannian extensioncotangent bundle |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Stéphane Puechmorel |
spellingShingle |
Stéphane Puechmorel Lifting Dual Connections with the Riemann Extension Mathematics Information geometry dual connections Riemannian extension cotangent bundle |
author_facet |
Stéphane Puechmorel |
author_sort |
Stéphane Puechmorel |
title |
Lifting Dual Connections with the Riemann Extension |
title_short |
Lifting Dual Connections with the Riemann Extension |
title_full |
Lifting Dual Connections with the Riemann Extension |
title_fullStr |
Lifting Dual Connections with the Riemann Extension |
title_full_unstemmed |
Lifting Dual Connections with the Riemann Extension |
title_sort |
lifting dual connections with the riemann extension |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-11-01 |
description |
Let <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a Riemannian manifold equipped with a pair of dual connections <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mo>∇</mo><mo>,</mo><msup><mo>∇</mo><mo>*</mo></msup><mo>)</mo></mrow></semantics></math></inline-formula>. Such a structure is known as a statistical manifold since it was defined in the context of information geometry. This paper aims at defining the complete lift of such a structure to the cotangent bundle <inline-formula><math display="inline"><semantics><mrow><msup><mi>T</mi><mo>*</mo></msup><mi>M</mi></mrow></semantics></math></inline-formula> using the Riemannian extension of the Levi-Civita connection of <i>M</i>. In the first section, common tensors are associated with pairs of dual connections, emphasizing the cyclic symmetry property of the so-called skewness tensor. In a second section, the complete lift of this tensor is obtained, allowing the definition of dual connections on <inline-formula><math display="inline"><semantics><mrow><mi>T</mi><msup><mi>T</mi><mo>*</mo></msup><mi>M</mi></mrow></semantics></math></inline-formula> with respect to the Riemannian extension. This work was motivated by the general problem of finding the projective limit of a sequence of a finite-dimensional statistical manifold. |
topic |
Information geometry dual connections Riemannian extension cotangent bundle |
url |
https://www.mdpi.com/2227-7390/8/11/2079 |
work_keys_str_mv |
AT stephanepuechmorel liftingdualconnectionswiththeriemannextension |
_version_ |
1724450697832824832 |