Modeling Type 1 Diabetes In Vitro Using Human Pluripotent Stem Cells

Summary: Understanding the root causes of autoimmune diseases is hampered by the inability to access relevant human tissues and identify the time of disease onset. To examine the interaction of immune cells and their cellular targets in type 1 diabetes, we differentiated human induced pluripotent st...

Full description

Bibliographic Details
Main Authors: Nayara C. Leite, Elad Sintov, Torsten B. Meissner, Michael A. Brehm, Dale L. Greiner, David M. Harlan, Douglas A. Melton
Format: Article
Language:English
Published: Elsevier 2020-07-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124720308755
Description
Summary:Summary: Understanding the root causes of autoimmune diseases is hampered by the inability to access relevant human tissues and identify the time of disease onset. To examine the interaction of immune cells and their cellular targets in type 1 diabetes, we differentiated human induced pluripotent stem cells into pancreatic endocrine cells, including β cells. Here, we describe an in vitro platform that models features of human type 1 diabetes using stress-induced patient-derived endocrine cells and autologous immune cells. We demonstrate a cell-type-specific response by autologous immune cells against induced pluripotent stem cell-derived β cells, along with a reduced effect on α cells. This approach represents a path to developing disease models that use patient-derived cells to predict the outcome of an autoimmune response.
ISSN:2211-1247