Genetic analysis of physiological indicators of drought tolerance in bread wheat using diallel technique

In order to study genetic architecture of physiological criteria of drought tolerance in wheat using different diallel techniques, an experiment was conducted on six bread wheat genotypes as parents and their 15 hybrids in a randomized complete block design with three replicates under rainf...

Full description

Bibliographic Details
Main Authors: Farshadfar Ezatollah, Amiri Reza
Format: Article
Language:English
Published: Serbian Genetics Society 2015-01-01
Series:Genetika
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0534-0012/2015/0534-00121501107F.pdf
Description
Summary:In order to study genetic architecture of physiological criteria of drought tolerance in wheat using different diallel techniques, an experiment was conducted on six bread wheat genotypes as parents and their 15 hybrids in a randomized complete block design with three replicates under rainfed conditions at the Research Farm of the Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran during 2010- 2011 cropping season. The results of analysis of variance showed significant differences between the genotypes for relative water content (RWC), relative chlorophyll content (RCC), chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll (Chl T) and proline concentration (PC). RWC, Chl T and PC exhibited significant differences for general combining ability, indicating the involvement of additive gene action in their inheritance. Moreover, as specific combining ability was not significant for all studied traits, hence these traits are predominantly controlled by additive gene action. Parent number one was the best general combiner for improvement of RWC, RCC and Chl b, while the best general combiner for improvement of Chl a, Chl T and PC was parent number five. Also, the best specific combination for improvement of RWC, RCC, Chl a, Chl b, Chl T and PC were the crosses 2×4, 1×2, 3×6, 1×6, 1×6 and 1×4, respectively indicating that parents of these crosses are genetically varied. Hayman and Morley-Jones analysis of variance revealed that the inheritance of RWC, Chl a, Chl b, and Chl T was mainly controlled by additive gene effects, while PC was controlled by both additive as well as dominance type of gene action.
ISSN:0534-0012
1820-6069