Integrative Transcriptomic and Metabolic Analyses Provide Insights into the Role of Trichomes in Tea Plant (<i>Camellia Sinensis</i>)
Trichomes, which develop from epidermal cells, are regarded as one of the key features that are involved in the evaluation of tea quality and tea germplasm resources. The metabolites from trichomes have been well characterized in tea products. However, little is known regarding the metabolites in fr...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-02-01
|
Series: | Biomolecules |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-273X/10/2/311 |
id |
doaj-ce94f1b3b33d4a98a6e30b5aa4ff9d74 |
---|---|
record_format |
Article |
spelling |
doaj-ce94f1b3b33d4a98a6e30b5aa4ff9d742020-11-25T02:38:23ZengMDPI AGBiomolecules2218-273X2020-02-0110231110.3390/biom10020311biom10020311Integrative Transcriptomic and Metabolic Analyses Provide Insights into the Role of Trichomes in Tea Plant (<i>Camellia Sinensis</i>)Hongli Cao0Jiamin Li1Yijun Ye2Hongzheng Lin3Zhilong Hao4Naixing Ye5Chuan Yue6College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, ChinaCollege of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, ChinaCollege of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, ChinaCollege of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, ChinaCollege of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, ChinaCollege of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, ChinaCollege of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, ChinaTrichomes, which develop from epidermal cells, are regarded as one of the key features that are involved in the evaluation of tea quality and tea germplasm resources. The metabolites from trichomes have been well characterized in tea products. However, little is known regarding the metabolites in fresh tea trichomes and the molecular differences in trichomes and tea leaves per se. In this study, we developed a method to collect trichomes from tea plant tender shoots, and their main secondary metabolites, including catechins, caffeine, amino acids, and aroma compounds, were determined. We found that the majority of these compounds were significantly less abundant in trichomes than in tea leaves. RNA-Seq was used to investigate the differences in the molecular regulatory mechanism between trichomes and leaves to gain further insight into the differences in trichomes and tea leaves. In total, 52.96 Gb of clean data were generated, and 6560 differentially expressed genes (DEGs), including 4471 upregulated and 2089 downregulated genes, were identified in the trichomes vs. leaves comparison. Notably, the structural genes of the major metabolite biosynthesis pathways, transcription factors, and other key DEGs were identified and comparatively analyzed between trichomes and leaves, while trichome-specific genes were also identified. Our results provide new insights into the differences between tea trichomes and leaves at the metabolic and transcriptomic levels, and open up new doors to further recognize and re-evaluate the role of trichomes in tea quality formation and tea plant growth and development.https://www.mdpi.com/2218-273X/10/2/311tea planttrichomestrichomes developmentsecondary metabolitesvolatile aroma |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hongli Cao Jiamin Li Yijun Ye Hongzheng Lin Zhilong Hao Naixing Ye Chuan Yue |
spellingShingle |
Hongli Cao Jiamin Li Yijun Ye Hongzheng Lin Zhilong Hao Naixing Ye Chuan Yue Integrative Transcriptomic and Metabolic Analyses Provide Insights into the Role of Trichomes in Tea Plant (<i>Camellia Sinensis</i>) Biomolecules tea plant trichomes trichomes development secondary metabolites volatile aroma |
author_facet |
Hongli Cao Jiamin Li Yijun Ye Hongzheng Lin Zhilong Hao Naixing Ye Chuan Yue |
author_sort |
Hongli Cao |
title |
Integrative Transcriptomic and Metabolic Analyses Provide Insights into the Role of Trichomes in Tea Plant (<i>Camellia Sinensis</i>) |
title_short |
Integrative Transcriptomic and Metabolic Analyses Provide Insights into the Role of Trichomes in Tea Plant (<i>Camellia Sinensis</i>) |
title_full |
Integrative Transcriptomic and Metabolic Analyses Provide Insights into the Role of Trichomes in Tea Plant (<i>Camellia Sinensis</i>) |
title_fullStr |
Integrative Transcriptomic and Metabolic Analyses Provide Insights into the Role of Trichomes in Tea Plant (<i>Camellia Sinensis</i>) |
title_full_unstemmed |
Integrative Transcriptomic and Metabolic Analyses Provide Insights into the Role of Trichomes in Tea Plant (<i>Camellia Sinensis</i>) |
title_sort |
integrative transcriptomic and metabolic analyses provide insights into the role of trichomes in tea plant (<i>camellia sinensis</i>) |
publisher |
MDPI AG |
series |
Biomolecules |
issn |
2218-273X |
publishDate |
2020-02-01 |
description |
Trichomes, which develop from epidermal cells, are regarded as one of the key features that are involved in the evaluation of tea quality and tea germplasm resources. The metabolites from trichomes have been well characterized in tea products. However, little is known regarding the metabolites in fresh tea trichomes and the molecular differences in trichomes and tea leaves per se. In this study, we developed a method to collect trichomes from tea plant tender shoots, and their main secondary metabolites, including catechins, caffeine, amino acids, and aroma compounds, were determined. We found that the majority of these compounds were significantly less abundant in trichomes than in tea leaves. RNA-Seq was used to investigate the differences in the molecular regulatory mechanism between trichomes and leaves to gain further insight into the differences in trichomes and tea leaves. In total, 52.96 Gb of clean data were generated, and 6560 differentially expressed genes (DEGs), including 4471 upregulated and 2089 downregulated genes, were identified in the trichomes vs. leaves comparison. Notably, the structural genes of the major metabolite biosynthesis pathways, transcription factors, and other key DEGs were identified and comparatively analyzed between trichomes and leaves, while trichome-specific genes were also identified. Our results provide new insights into the differences between tea trichomes and leaves at the metabolic and transcriptomic levels, and open up new doors to further recognize and re-evaluate the role of trichomes in tea quality formation and tea plant growth and development. |
topic |
tea plant trichomes trichomes development secondary metabolites volatile aroma |
url |
https://www.mdpi.com/2218-273X/10/2/311 |
work_keys_str_mv |
AT honglicao integrativetranscriptomicandmetabolicanalysesprovideinsightsintotheroleoftrichomesinteaplanticamelliasinensisi AT jiaminli integrativetranscriptomicandmetabolicanalysesprovideinsightsintotheroleoftrichomesinteaplanticamelliasinensisi AT yijunye integrativetranscriptomicandmetabolicanalysesprovideinsightsintotheroleoftrichomesinteaplanticamelliasinensisi AT hongzhenglin integrativetranscriptomicandmetabolicanalysesprovideinsightsintotheroleoftrichomesinteaplanticamelliasinensisi AT zhilonghao integrativetranscriptomicandmetabolicanalysesprovideinsightsintotheroleoftrichomesinteaplanticamelliasinensisi AT naixingye integrativetranscriptomicandmetabolicanalysesprovideinsightsintotheroleoftrichomesinteaplanticamelliasinensisi AT chuanyue integrativetranscriptomicandmetabolicanalysesprovideinsightsintotheroleoftrichomesinteaplanticamelliasinensisi |
_version_ |
1724791238340640768 |