A Rational Approximation for the Complete Elliptic Integral of the First Kind
Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">K</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> be the c...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/4/635 |
id |
doaj-ce85462716794d37a05dbd1155bc65d8 |
---|---|
record_format |
Article |
spelling |
doaj-ce85462716794d37a05dbd1155bc65d82020-11-25T03:00:40ZengMDPI AGMathematics2227-73902020-04-01863563510.3390/math8040635A Rational Approximation for the Complete Elliptic Integral of the First KindZhen-Hang Yang0Jing-Feng Tian1Ya-Ru Zhu2Engineering Research Center of Intelligent Computing for Complex Energy Systems of Ministry of Education, North China Electric Power University, Yonghua Street 619, Baoding 071003, ChinaDepartment of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, ChinaDepartment of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, ChinaLet <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">K</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> be the complete elliptic integral of the first kind. We present an accurate rational lower approximation for <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">K</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. More precisely, we establish the inequality <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mn>2</mn> <mi>π</mi> </mfrac> <mi mathvariant="script">K</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>></mo> <mfrac> <mrow> <mn>5</mn> <msup> <mrow> <mo>(</mo> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>126</mn> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>+</mo> <mn>61</mn> </mrow> <mrow> <mn>61</mn> <msup> <mrow> <mo stretchy="false">(</mo> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>110</mn> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>+</mo> <mn>21</mn> </mrow> </mfrac> </mrow> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>∈</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>=</mo> <msqrt> <mrow> <mn>1</mn> <mo>−</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </semantics> </math> </inline-formula>. The lower bound is sharp.https://www.mdpi.com/2227-7390/8/4/635complete integrals of the first kindarithmetic-geometric meanrational approximation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhen-Hang Yang Jing-Feng Tian Ya-Ru Zhu |
spellingShingle |
Zhen-Hang Yang Jing-Feng Tian Ya-Ru Zhu A Rational Approximation for the Complete Elliptic Integral of the First Kind Mathematics complete integrals of the first kind arithmetic-geometric mean rational approximation |
author_facet |
Zhen-Hang Yang Jing-Feng Tian Ya-Ru Zhu |
author_sort |
Zhen-Hang Yang |
title |
A Rational Approximation for the Complete Elliptic Integral of the First Kind |
title_short |
A Rational Approximation for the Complete Elliptic Integral of the First Kind |
title_full |
A Rational Approximation for the Complete Elliptic Integral of the First Kind |
title_fullStr |
A Rational Approximation for the Complete Elliptic Integral of the First Kind |
title_full_unstemmed |
A Rational Approximation for the Complete Elliptic Integral of the First Kind |
title_sort |
rational approximation for the complete elliptic integral of the first kind |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-04-01 |
description |
Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">K</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> be the complete elliptic integral of the first kind. We present an accurate rational lower approximation for <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">K</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. More precisely, we establish the inequality <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mn>2</mn> <mi>π</mi> </mfrac> <mi mathvariant="script">K</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>></mo> <mfrac> <mrow> <mn>5</mn> <msup> <mrow> <mo>(</mo> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>126</mn> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>+</mo> <mn>61</mn> </mrow> <mrow> <mn>61</mn> <msup> <mrow> <mo stretchy="false">(</mo> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>110</mn> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>+</mo> <mn>21</mn> </mrow> </mfrac> </mrow> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>∈</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>=</mo> <msqrt> <mrow> <mn>1</mn> <mo>−</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </semantics> </math> </inline-formula>. The lower bound is sharp. |
topic |
complete integrals of the first kind arithmetic-geometric mean rational approximation |
url |
https://www.mdpi.com/2227-7390/8/4/635 |
work_keys_str_mv |
AT zhenhangyang arationalapproximationforthecompleteellipticintegralofthefirstkind AT jingfengtian arationalapproximationforthecompleteellipticintegralofthefirstkind AT yaruzhu arationalapproximationforthecompleteellipticintegralofthefirstkind AT zhenhangyang rationalapproximationforthecompleteellipticintegralofthefirstkind AT jingfengtian rationalapproximationforthecompleteellipticintegralofthefirstkind AT yaruzhu rationalapproximationforthecompleteellipticintegralofthefirstkind |
_version_ |
1724696673050951680 |