A Rational Approximation for the Complete Elliptic Integral of the First Kind

Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">K</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> be the c...

Full description

Bibliographic Details
Main Authors: Zhen-Hang Yang, Jing-Feng Tian, Ya-Ru Zhu
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/4/635
id doaj-ce85462716794d37a05dbd1155bc65d8
record_format Article
spelling doaj-ce85462716794d37a05dbd1155bc65d82020-11-25T03:00:40ZengMDPI AGMathematics2227-73902020-04-01863563510.3390/math8040635A Rational Approximation for the Complete Elliptic Integral of the First KindZhen-Hang Yang0Jing-Feng Tian1Ya-Ru Zhu2Engineering Research Center of Intelligent Computing for Complex Energy Systems of Ministry of Education, North China Electric Power University, Yonghua Street 619, Baoding 071003, ChinaDepartment of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, ChinaDepartment of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, ChinaLet <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">K</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> be the complete elliptic integral of the first kind. We present an accurate rational lower approximation for <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">K</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. More precisely, we establish the inequality <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mn>2</mn> <mi>π</mi> </mfrac> <mi mathvariant="script">K</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>></mo> <mfrac> <mrow> <mn>5</mn> <msup> <mrow> <mo>(</mo> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>126</mn> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>+</mo> <mn>61</mn> </mrow> <mrow> <mn>61</mn> <msup> <mrow> <mo stretchy="false">(</mo> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>110</mn> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>+</mo> <mn>21</mn> </mrow> </mfrac> </mrow> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>∈</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>=</mo> <msqrt> <mrow> <mn>1</mn> <mo>−</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </semantics> </math> </inline-formula>. The lower bound is sharp.https://www.mdpi.com/2227-7390/8/4/635complete integrals of the first kindarithmetic-geometric meanrational approximation
collection DOAJ
language English
format Article
sources DOAJ
author Zhen-Hang Yang
Jing-Feng Tian
Ya-Ru Zhu
spellingShingle Zhen-Hang Yang
Jing-Feng Tian
Ya-Ru Zhu
A Rational Approximation for the Complete Elliptic Integral of the First Kind
Mathematics
complete integrals of the first kind
arithmetic-geometric mean
rational approximation
author_facet Zhen-Hang Yang
Jing-Feng Tian
Ya-Ru Zhu
author_sort Zhen-Hang Yang
title A Rational Approximation for the Complete Elliptic Integral of the First Kind
title_short A Rational Approximation for the Complete Elliptic Integral of the First Kind
title_full A Rational Approximation for the Complete Elliptic Integral of the First Kind
title_fullStr A Rational Approximation for the Complete Elliptic Integral of the First Kind
title_full_unstemmed A Rational Approximation for the Complete Elliptic Integral of the First Kind
title_sort rational approximation for the complete elliptic integral of the first kind
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-04-01
description Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">K</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> be the complete elliptic integral of the first kind. We present an accurate rational lower approximation for <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">K</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. More precisely, we establish the inequality <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mn>2</mn> <mi>π</mi> </mfrac> <mi mathvariant="script">K</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>></mo> <mfrac> <mrow> <mn>5</mn> <msup> <mrow> <mo>(</mo> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>126</mn> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>+</mo> <mn>61</mn> </mrow> <mrow> <mn>61</mn> <msup> <mrow> <mo stretchy="false">(</mo> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>110</mn> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>+</mo> <mn>21</mn> </mrow> </mfrac> </mrow> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>∈</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo>=</mo> <msqrt> <mrow> <mn>1</mn> <mo>−</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </semantics> </math> </inline-formula>. The lower bound is sharp.
topic complete integrals of the first kind
arithmetic-geometric mean
rational approximation
url https://www.mdpi.com/2227-7390/8/4/635
work_keys_str_mv AT zhenhangyang arationalapproximationforthecompleteellipticintegralofthefirstkind
AT jingfengtian arationalapproximationforthecompleteellipticintegralofthefirstkind
AT yaruzhu arationalapproximationforthecompleteellipticintegralofthefirstkind
AT zhenhangyang rationalapproximationforthecompleteellipticintegralofthefirstkind
AT jingfengtian rationalapproximationforthecompleteellipticintegralofthefirstkind
AT yaruzhu rationalapproximationforthecompleteellipticintegralofthefirstkind
_version_ 1724696673050951680