Ricci Curvature for Warped Product Submanifolds of Sasakian Space Forms and Its Applications to Differential Equations
In the present paper, we establish a Chen–Ricci inequality for a C-totally real warped product submanifold Mn of Sasakian space forms M2m+1ε. As Chen–Ricci inequality applications, we found the characterization of the base of the warped product Mn via the first eigenvalue of Laplace–Beltrami operato...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2021/1207646 |
Summary: | In the present paper, we establish a Chen–Ricci inequality for a C-totally real warped product submanifold Mn of Sasakian space forms M2m+1ε. As Chen–Ricci inequality applications, we found the characterization of the base of the warped product Mn via the first eigenvalue of Laplace–Beltrami operator defined on the warping function and a second-order ordinary differential equation. We find the necessary conditions for a base B of a C-totally real-warped product submanifold to be an isometric to the Euclidean sphere Sp. |
---|---|
ISSN: | 2314-4629 2314-4785 |