Exponentially Modified Peak Functions in Biomedical Sciences and Related Disciplines
In many cases relevant to biomedicine, a variable time, which features a certain distribution, is required for objects of interest to pass from an initial to an intermediate state, out of which they exit at random to a final state. In such cases, the distribution of variable times between exiting th...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | Computational and Mathematical Methods in Medicine |
Online Access: | http://dx.doi.org/10.1155/2017/7925106 |
Summary: | In many cases relevant to biomedicine, a variable time, which features a certain distribution, is required for objects of interest to pass from an initial to an intermediate state, out of which they exit at random to a final state. In such cases, the distribution of variable times between exiting the initial and entering the final state must conform to the convolution of the first distribution and a negative exponential distribution. A common example is the exponentially modified Gaussian (EMG), which is widely used in chromatography for peak analysis and is long known as ex-Gaussian in psychophysiology, where it is applied to times from stimulus to response. In molecular and cell biology, EMG, compared with commonly used simple distributions, such as lognormal, gamma, and Wald, provides better fits to the variabilities of times between consecutive cell divisions and transcriptional bursts and has more straightforwardly interpreted parameters. However, since the range of definition of the Gaussian component of EMG is unlimited, data approximation with EMG may extend to the negative domain. This extension may seem negligible when the coefficient of variance of the Gaussian component is small but becomes considerable when the coefficient increases. Therefore, although in many cases an EMG may be an acceptable approximation of data, an exponentially modified nonnegative peak function, such as gamma-distribution, can make more sense in physical terms. In the present short review, EMG and exponentially modified gamma-distribution (EMGD) are discussed with regard to their applicability to data on cell cycle, gene expression, physiological responses to stimuli, and other cases, some of which may be interpreted as decision-making. In practical fitting terms, EMG and EMGD are equivalent in outperforming other functions; however, when the coefficient of variance of the Gaussian component of EMG is greater than ca. 0.4, EMGD is preferable. |
---|---|
ISSN: | 1748-670X 1748-6718 |