Long-Term Forecast of Energy and Fuels Demand Towards a Sustainable Road Transport Sector in Ecuador (2016–2035): A LEAP Model Application

The total energy demand in the transport sector represented 48.80% of the total consumption in Ecuador throughout 2016, where 89.87% corresponded to the road transport sector. Therefore, it is crucial to analyze the future behavior of this sector and assess the economic and environmental measures to...

Full description

Bibliographic Details
Main Authors: Luis Rivera-González, David Bolonio, Luis F. Mazadiego, Sebastián Naranjo-Silva, Kenny Escobar-Segovia
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/12/2/472
Description
Summary:The total energy demand in the transport sector represented 48.80% of the total consumption in Ecuador throughout 2016, where 89.87% corresponded to the road transport sector. Therefore, it is crucial to analyze the future behavior of this sector and assess the economic and environmental measures towards sustainable development. Consequently, this study analyzed: (1) the total energy demand for each vehicle class and fuel type; (2) the GHG (greenhouse gas) emissions and air pollutants NO<sub>x</sub> and PM<sub>10</sub>; and (3) the cost attributed to the fuel demand, between 2016 and 2035. For this, four alternative demand scenarios were designed: BAU: Business As Usual; EOM: Energy Optimization and Mitigation; AF: Alternative Fuels; and SM: Sustainable Mobility using Long-range Energy Alternatives Planning system. After analysis, the EOM, AF, and SM scenarios have advantages relative to BAU, where SM particularly stands out. The results show that SM compared to BAU, contributes with a 12.14% (141,226 kBOE) decrease of the total energy demand, and the economic savings for this fuel demand is of 14.22% (26,720 MUSD). Moreover, global NO<sub>x</sub> and PM<sub>10</sub> emissions decreased by 14.91% and 13.78%, respectively. Additionally, accumulated GHG emissions decreased by 13.49% due to the improvement of the fuel quality for the vehicles that mainly consume liquefied petroleum gas, natural gas, and electricity.
ISSN:2071-1050