Novel Gliclazide Electrosprayed Nano-Solid Dispersions: Physicochemical Characterization and Dissolution Evaluation
Purpose: In the current study, electrospraying was directed as a novel alternative approach to improve the physicochemical attributes of gliclazide (GLC), as a poorly water-soluble drug, by creating nanocrystalline/amorphous solid dispersions (ESSs). Methods: ESSs were formulated using Eudragit® RS...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Tabriz University of Medical Sciences
2019-06-01
|
Series: | Advanced Pharmaceutical Bulletin |
Subjects: | |
Online Access: | https://apb.tbzmed.ac.ir/PDF/apb-22801 |
id |
doaj-ce088d8811304d81a6823a63e1835446 |
---|---|
record_format |
Article |
spelling |
doaj-ce088d8811304d81a6823a63e18354462020-11-25T01:02:48ZengTabriz University of Medical Sciences Advanced Pharmaceutical Bulletin2228-58812251-73082019-06-019223124010.15171/apb.2019.026apb-22801Novel Gliclazide Electrosprayed Nano-Solid Dispersions: Physicochemical Characterization and Dissolution EvaluationKhosro Adibkia0Solmaz Ghajar1Karim Osouli-Bostanabad2Niloufar Balaei3Shahram Emami4Mohammad Barzegar-Jalali5Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, IranPurpose: In the current study, electrospraying was directed as a novel alternative approach to improve the physicochemical attributes of gliclazide (GLC), as a poorly water-soluble drug, by creating nanocrystalline/amorphous solid dispersions (ESSs). Methods: ESSs were formulated using Eudragit® RS100 and polyethylene glycol (PEG) 6000 as polymeric carriers at various drug: polymer ratios (i.e. 1:5 and 1:10) with different total solution concentrations of 10, 15, and 20% w/v. Morphological, physicochemical, and in-vitro release characteristics of the developed formulations were assessed. Furthermore, GLC dissolution behaviors from ESSs were fitted to various models in order to realize the drug release mechanism. Results: Field emission scanning electron microscopy analyses revealed that the size and morphology of the ESSs were affected by the drug: polymer ratios and solution concentrations. The polymer ratio augmentation led to increase in the particle size while the solution concentration enhancement yielded in a fiber establishment. Differential scanning calorimetry and powder X-ray diffraction investigations demonstrated that the ESSs were present in an amorphous state. Furthermore, the in vitro drug release studies depicted that the samples prepared employing PEG 6000 as carrier enhanced the dissolution rate and the model that appropriately fitted the release behavior of ESSs was Weibull model, where demonstrating a Fickian diffusion as the leading release mechanism. Fourier-transform infrared spectroscopy results showed a probability of complexation or hydrogen bonding, development between GLC and the polymers in the solid state. Conclusion: Hence the electrospraying system avails the both nanosizing and amorphization advantages, therefore, it can be efficiently applied to formulating of ESSs of BCS Class II drugs.https://apb.tbzmed.ac.ir/PDF/apb-22801Amorphous solid dispersionsEudragit® RS100ElectrosprayGliclazideIn vitro evaluationNanocrystalline |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Khosro Adibkia Solmaz Ghajar Karim Osouli-Bostanabad Niloufar Balaei Shahram Emami Mohammad Barzegar-Jalali |
spellingShingle |
Khosro Adibkia Solmaz Ghajar Karim Osouli-Bostanabad Niloufar Balaei Shahram Emami Mohammad Barzegar-Jalali Novel Gliclazide Electrosprayed Nano-Solid Dispersions: Physicochemical Characterization and Dissolution Evaluation Advanced Pharmaceutical Bulletin Amorphous solid dispersions Eudragit® RS100 Electrospray Gliclazide In vitro evaluation Nanocrystalline |
author_facet |
Khosro Adibkia Solmaz Ghajar Karim Osouli-Bostanabad Niloufar Balaei Shahram Emami Mohammad Barzegar-Jalali |
author_sort |
Khosro Adibkia |
title |
Novel Gliclazide Electrosprayed Nano-Solid Dispersions: Physicochemical Characterization and Dissolution Evaluation |
title_short |
Novel Gliclazide Electrosprayed Nano-Solid Dispersions: Physicochemical Characterization and Dissolution Evaluation |
title_full |
Novel Gliclazide Electrosprayed Nano-Solid Dispersions: Physicochemical Characterization and Dissolution Evaluation |
title_fullStr |
Novel Gliclazide Electrosprayed Nano-Solid Dispersions: Physicochemical Characterization and Dissolution Evaluation |
title_full_unstemmed |
Novel Gliclazide Electrosprayed Nano-Solid Dispersions: Physicochemical Characterization and Dissolution Evaluation |
title_sort |
novel gliclazide electrosprayed nano-solid dispersions: physicochemical characterization and dissolution evaluation |
publisher |
Tabriz University of Medical Sciences |
series |
Advanced Pharmaceutical Bulletin |
issn |
2228-5881 2251-7308 |
publishDate |
2019-06-01 |
description |
Purpose: In the current study, electrospraying was directed as a novel alternative approach to improve the physicochemical attributes of gliclazide (GLC), as a poorly water-soluble drug, by creating nanocrystalline/amorphous solid dispersions (ESSs). Methods: ESSs were formulated using Eudragit® RS100 and polyethylene glycol (PEG) 6000 as polymeric carriers at various drug: polymer ratios (i.e. 1:5 and 1:10) with different total solution concentrations of 10, 15, and 20% w/v. Morphological, physicochemical, and in-vitro release characteristics of the developed formulations were assessed. Furthermore, GLC dissolution behaviors from ESSs were fitted to various models in order to realize the drug release mechanism. Results: Field emission scanning electron microscopy analyses revealed that the size and morphology of the ESSs were affected by the drug: polymer ratios and solution concentrations. The polymer ratio augmentation led to increase in the particle size while the solution concentration enhancement yielded in a fiber establishment. Differential scanning calorimetry and powder X-ray diffraction investigations demonstrated that the ESSs were present in an amorphous state. Furthermore, the in vitro drug release studies depicted that the samples prepared employing PEG 6000 as carrier enhanced the dissolution rate and the model that appropriately fitted the release behavior of ESSs was Weibull model, where demonstrating a Fickian diffusion as the leading release mechanism. Fourier-transform infrared spectroscopy results showed a probability of complexation or hydrogen bonding, development between GLC and the polymers in the solid state. Conclusion: Hence the electrospraying system avails the both nanosizing and amorphization advantages, therefore, it can be efficiently applied to formulating of ESSs of BCS Class II drugs. |
topic |
Amorphous solid dispersions Eudragit® RS100 Electrospray Gliclazide In vitro evaluation Nanocrystalline |
url |
https://apb.tbzmed.ac.ir/PDF/apb-22801 |
work_keys_str_mv |
AT khosroadibkia novelgliclazideelectrosprayednanosoliddispersionsphysicochemicalcharacterizationanddissolutionevaluation AT solmazghajar novelgliclazideelectrosprayednanosoliddispersionsphysicochemicalcharacterizationanddissolutionevaluation AT karimosoulibostanabad novelgliclazideelectrosprayednanosoliddispersionsphysicochemicalcharacterizationanddissolutionevaluation AT niloufarbalaei novelgliclazideelectrosprayednanosoliddispersionsphysicochemicalcharacterizationanddissolutionevaluation AT shahramemami novelgliclazideelectrosprayednanosoliddispersionsphysicochemicalcharacterizationanddissolutionevaluation AT mohammadbarzegarjalali novelgliclazideelectrosprayednanosoliddispersionsphysicochemicalcharacterizationanddissolutionevaluation |
_version_ |
1725203508824637440 |