Mechanism of pyocyanin abolishment caused by mvaT mvaU double knockout in Pseudomonas aeruginosa PAO1
MvaT and MvaU are global transcriptional regulators belonging to the H-NS family, and pyocyanin is an important virulence factor produced by Pseudomonas aeruginosa. mvaT mvaU double knockout mutant of P. aeruginosa PAO1 demonstrated pyocyanin abolishment in the previous study. Here, we further explo...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2020-01-01
|
Series: | Virulence |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/21505594.2019.1708052 |
id |
doaj-ce081bb56dc649619eeeb22fbab47e6b |
---|---|
record_format |
Article |
spelling |
doaj-ce081bb56dc649619eeeb22fbab47e6b2021-01-15T14:09:06ZengTaylor & Francis GroupVirulence2150-55942150-56082020-01-01111576710.1080/21505594.2019.17080521708052Mechanism of pyocyanin abolishment caused by mvaT mvaU double knockout in Pseudomonas aeruginosa PAO1Limin Dong0Jing Pang1Xiukun Wang2Youwen Zhang3Guoqing Li4Xinxin Hu5Xinyi Yang6Chung-Dar Lu7Congran Li8Xuefu You9Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeUniversity of Massachusetts at LowellInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeMvaT and MvaU are global transcriptional regulators belonging to the H-NS family, and pyocyanin is an important virulence factor produced by Pseudomonas aeruginosa. mvaT mvaU double knockout mutant of P. aeruginosa PAO1 demonstrated pyocyanin abolishment in the previous study. Here, we further explored the mechanism. Two main directions were studied: pyocyanin biosynthesis pathway and QS system. The effect on the expression of the pyocyanin biosynthesis genes was evaluated by promoter strength determination and Real-Time PCR assay, and significant changes leading to low pyocyanin production were found. The effect on the QS system was studied by signal molecule quantification using LC-MS/MS and related gene expression measurements using Real-Time PCR. In mvaT mvaU double knockout, the production of 3-oxo-C12-HSL obviously increased, while those of C4-HSL and PQS obviously decreased, and the changes can be recovered by mvaT or mvaU complementation. The expressions of transcriptional activator genes binding with QS system signal molecules were all decreased, resulting in decreased formation of signal-transcriptional activator complexes. And the decreased expression of rhlR and pqsE also led to the lower expression of phzA1 and phzA2. Further exploration found that QS system downregulation may be related to QsrO, a QS system repressor, which was highly upregulated with mvaT mvaU double knockout. Hence, the synthesis of pyocyanin was suffocated and the biofilm formation ability was decreased. These results were also confirmed by transcriptome analysis, which demonstrated similar gene expression changes of the aforementioned genes together with decreased expression of other virulence factor genes regulated by QS system.http://dx.doi.org/10.1080/21505594.2019.1708052pyocyaninmvatmvauh-nsquorum sensing |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Limin Dong Jing Pang Xiukun Wang Youwen Zhang Guoqing Li Xinxin Hu Xinyi Yang Chung-Dar Lu Congran Li Xuefu You |
spellingShingle |
Limin Dong Jing Pang Xiukun Wang Youwen Zhang Guoqing Li Xinxin Hu Xinyi Yang Chung-Dar Lu Congran Li Xuefu You Mechanism of pyocyanin abolishment caused by mvaT mvaU double knockout in Pseudomonas aeruginosa PAO1 Virulence pyocyanin mvat mvau h-ns quorum sensing |
author_facet |
Limin Dong Jing Pang Xiukun Wang Youwen Zhang Guoqing Li Xinxin Hu Xinyi Yang Chung-Dar Lu Congran Li Xuefu You |
author_sort |
Limin Dong |
title |
Mechanism of pyocyanin abolishment caused by mvaT mvaU double knockout in Pseudomonas aeruginosa PAO1 |
title_short |
Mechanism of pyocyanin abolishment caused by mvaT mvaU double knockout in Pseudomonas aeruginosa PAO1 |
title_full |
Mechanism of pyocyanin abolishment caused by mvaT mvaU double knockout in Pseudomonas aeruginosa PAO1 |
title_fullStr |
Mechanism of pyocyanin abolishment caused by mvaT mvaU double knockout in Pseudomonas aeruginosa PAO1 |
title_full_unstemmed |
Mechanism of pyocyanin abolishment caused by mvaT mvaU double knockout in Pseudomonas aeruginosa PAO1 |
title_sort |
mechanism of pyocyanin abolishment caused by mvat mvau double knockout in pseudomonas aeruginosa pao1 |
publisher |
Taylor & Francis Group |
series |
Virulence |
issn |
2150-5594 2150-5608 |
publishDate |
2020-01-01 |
description |
MvaT and MvaU are global transcriptional regulators belonging to the H-NS family, and pyocyanin is an important virulence factor produced by Pseudomonas aeruginosa. mvaT mvaU double knockout mutant of P. aeruginosa PAO1 demonstrated pyocyanin abolishment in the previous study. Here, we further explored the mechanism. Two main directions were studied: pyocyanin biosynthesis pathway and QS system. The effect on the expression of the pyocyanin biosynthesis genes was evaluated by promoter strength determination and Real-Time PCR assay, and significant changes leading to low pyocyanin production were found. The effect on the QS system was studied by signal molecule quantification using LC-MS/MS and related gene expression measurements using Real-Time PCR. In mvaT mvaU double knockout, the production of 3-oxo-C12-HSL obviously increased, while those of C4-HSL and PQS obviously decreased, and the changes can be recovered by mvaT or mvaU complementation. The expressions of transcriptional activator genes binding with QS system signal molecules were all decreased, resulting in decreased formation of signal-transcriptional activator complexes. And the decreased expression of rhlR and pqsE also led to the lower expression of phzA1 and phzA2. Further exploration found that QS system downregulation may be related to QsrO, a QS system repressor, which was highly upregulated with mvaT mvaU double knockout. Hence, the synthesis of pyocyanin was suffocated and the biofilm formation ability was decreased. These results were also confirmed by transcriptome analysis, which demonstrated similar gene expression changes of the aforementioned genes together with decreased expression of other virulence factor genes regulated by QS system. |
topic |
pyocyanin mvat mvau h-ns quorum sensing |
url |
http://dx.doi.org/10.1080/21505594.2019.1708052 |
work_keys_str_mv |
AT limindong mechanismofpyocyaninabolishmentcausedbymvatmvaudoubleknockoutinpseudomonasaeruginosapao1 AT jingpang mechanismofpyocyaninabolishmentcausedbymvatmvaudoubleknockoutinpseudomonasaeruginosapao1 AT xiukunwang mechanismofpyocyaninabolishmentcausedbymvatmvaudoubleknockoutinpseudomonasaeruginosapao1 AT youwenzhang mechanismofpyocyaninabolishmentcausedbymvatmvaudoubleknockoutinpseudomonasaeruginosapao1 AT guoqingli mechanismofpyocyaninabolishmentcausedbymvatmvaudoubleknockoutinpseudomonasaeruginosapao1 AT xinxinhu mechanismofpyocyaninabolishmentcausedbymvatmvaudoubleknockoutinpseudomonasaeruginosapao1 AT xinyiyang mechanismofpyocyaninabolishmentcausedbymvatmvaudoubleknockoutinpseudomonasaeruginosapao1 AT chungdarlu mechanismofpyocyaninabolishmentcausedbymvatmvaudoubleknockoutinpseudomonasaeruginosapao1 AT congranli mechanismofpyocyaninabolishmentcausedbymvatmvaudoubleknockoutinpseudomonasaeruginosapao1 AT xuefuyou mechanismofpyocyaninabolishmentcausedbymvatmvaudoubleknockoutinpseudomonasaeruginosapao1 |
_version_ |
1714944421376557056 |