Approximation of the periodical functions of high smoothness by the right-angled linear means of Fourier series

We obtain asymptotic equalities for upper bounds of the deviations of the right-angled de la Vallee Poussin sums taken over classes of periodical functions of many variables of high smoothness. These equalities guarantee the solvability of the Kolmogorov-Nikolskii problem for the right-angled de la...

Full description

Bibliographic Details
Main Authors: Olga G Rovenska, Oleg Aleksandrovich Novikov
Format: Article
Language:Russian
Published: Institute of Computer Science 2012-09-01
Series:Компьютерные исследования и моделирование
Subjects:
Online Access:http://crm.ics.org.ru/uploads/crmissues/crm_2012_3/521-529.pdf
Description
Summary:We obtain asymptotic equalities for upper bounds of the deviations of the right-angled de la Vallee Poussin sums taken over classes of periodical functions of many variables of high smoothness. These equalities guarantee the solvability of the Kolmogorov-Nikolskii problem for the right-angled de la Vallee Poussin sums on the specified classes of functions.
ISSN:2076-7633
2077-6853