SIMULATED DAIRY WASTEWATER TREATMENT IN A PILOT PLANT SCALE MAGNETO-ACTIVE HYBRID ANAEROBIC BIOFILM REACTOR (MA-HABR)

Abstract The aim of this study was to determine the effects of magneto-active microporous packing media manufactured by extrusion technology and modified by the addition of relevant amounts of metal catalysts and magnetic activation on the effectiveness of simulated dairy wastewater (SDW) treatment...

Full description

Bibliographic Details
Main Authors: Marcin Dębowski, Marcin Zieliński, Marta Kisielewska, Mirosław Krzemieniewski, Monika Makowska, Marian Grądkowski, Aneta Tor-Świątek
Format: Article
Language:English
Published: Brazilian Society of Chemical Engineering
Series:Brazilian Journal of Chemical Engineering
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000200553&lng=en&tlng=en
Description
Summary:Abstract The aim of this study was to determine the effects of magneto-active microporous packing media manufactured by extrusion technology and modified by the addition of relevant amounts of metal catalysts and magnetic activation on the effectiveness of simulated dairy wastewater (SDW) treatment and biogas productivity in a pilot plant scale hybrid anaerobic biofilm reactor with full mixing. The best performance was found at an organic loading rate (OLR) in the range 6.0 - 8.0 kg COD/m3·d, where the chemical oxygen demand (COD) removal was about 80%, the biogas yield ranged from 256.7 - 310.9 L/kg CODremoved, the methane production ranged from 420.6 - 557.1 L/d and total phosphorus removal ranged from 82.9 - 90.7%. The study demonstrated that the application of the innovative packing media in the biofilm-bed reactor enhanced the sorption of organic matter, biogas productivity and the binding of biogenic compounds.
ISSN:1678-4383