Spectrum of one dimensional p-Laplacian operator with indefinite weight
This paper is concerned with the nonlinear boundary eigenvalue problem $$-(|u'|^{p-2}u')'=\lambda m|u|^{p-2}u\qquad u \in I=]a,b[,\quad u(a)=u(b)=0,$$ where $p>1$, $\lambda$ is a real parameter, $m$ is an indefinite weight, and $a$, $b$ are real numbers. We prove there exists a uni...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2002-01-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=143 |
id |
doaj-cde228db66cc4534bf4d5aa46060457c |
---|---|
record_format |
Article |
spelling |
doaj-cde228db66cc4534bf4d5aa46060457c2021-07-14T07:21:18ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752002-01-0120021711110.14232/ejqtde.2002.1.17143Spectrum of one dimensional p-Laplacian operator with indefinite weightMohammed Moussa0A. Anane1Omar Chakrone2University Ibn Tofail, Kenitra, MoroccoUniversity Mohamed Ist, Oujda, MoroccoUniversity Mohamed Ist, Oujda, MoroccoThis paper is concerned with the nonlinear boundary eigenvalue problem $$-(|u'|^{p-2}u')'=\lambda m|u|^{p-2}u\qquad u \in I=]a,b[,\quad u(a)=u(b)=0,$$ where $p>1$, $\lambda$ is a real parameter, $m$ is an indefinite weight, and $a$, $b$ are real numbers. We prove there exists a unique sequence of eigenvalues for this problem. Each eigenvalue is simple and verifies the strict monotonicity property with respect to the weight $m$ and the domain $I$, the k-th eigenfunction, corresponding to the $k$-th eigenvalue, has exactly $k-1$ zeros in $(a,b)$. At the end, we give a simple variational formulation of eigenvalues.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=143 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mohammed Moussa A. Anane Omar Chakrone |
spellingShingle |
Mohammed Moussa A. Anane Omar Chakrone Spectrum of one dimensional p-Laplacian operator with indefinite weight Electronic Journal of Qualitative Theory of Differential Equations |
author_facet |
Mohammed Moussa A. Anane Omar Chakrone |
author_sort |
Mohammed Moussa |
title |
Spectrum of one dimensional p-Laplacian operator with indefinite weight |
title_short |
Spectrum of one dimensional p-Laplacian operator with indefinite weight |
title_full |
Spectrum of one dimensional p-Laplacian operator with indefinite weight |
title_fullStr |
Spectrum of one dimensional p-Laplacian operator with indefinite weight |
title_full_unstemmed |
Spectrum of one dimensional p-Laplacian operator with indefinite weight |
title_sort |
spectrum of one dimensional p-laplacian operator with indefinite weight |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2002-01-01 |
description |
This paper is concerned with the nonlinear boundary eigenvalue problem
$$-(|u'|^{p-2}u')'=\lambda m|u|^{p-2}u\qquad u \in I=]a,b[,\quad u(a)=u(b)=0,$$
where $p>1$, $\lambda$ is a real parameter, $m$ is an indefinite weight, and $a$, $b$ are real numbers. We prove there exists a unique sequence of eigenvalues for this problem. Each eigenvalue is simple and verifies the strict monotonicity property with respect to the weight $m$ and the domain $I$, the k-th eigenfunction, corresponding to the $k$-th eigenvalue, has exactly $k-1$ zeros in $(a,b)$. At the end, we give a simple variational formulation of eigenvalues. |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=143 |
work_keys_str_mv |
AT mohammedmoussa spectrumofonedimensionalplaplacianoperatorwithindefiniteweight AT aanane spectrumofonedimensionalplaplacianoperatorwithindefiniteweight AT omarchakrone spectrumofonedimensionalplaplacianoperatorwithindefiniteweight |
_version_ |
1721303976407728128 |