Spectrum of one dimensional p-Laplacian operator with indefinite weight

This paper is concerned with the nonlinear boundary eigenvalue problem $$-(|u'|^{p-2}u')'=\lambda m|u|^{p-2}u\qquad u \in I=]a,b[,\quad u(a)=u(b)=0,$$ where $p>1$, $\lambda$ is a real parameter, $m$ is an indefinite weight, and $a$, $b$ are real numbers. We prove there exists a uni...

Full description

Bibliographic Details
Main Authors: Mohammed Moussa, A. Anane, Omar Chakrone
Format: Article
Language:English
Published: University of Szeged 2002-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=143
id doaj-cde228db66cc4534bf4d5aa46060457c
record_format Article
spelling doaj-cde228db66cc4534bf4d5aa46060457c2021-07-14T07:21:18ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752002-01-0120021711110.14232/ejqtde.2002.1.17143Spectrum of one dimensional p-Laplacian operator with indefinite weightMohammed Moussa0A. Anane1Omar Chakrone2University Ibn Tofail, Kenitra, MoroccoUniversity Mohamed Ist, Oujda, MoroccoUniversity Mohamed Ist, Oujda, MoroccoThis paper is concerned with the nonlinear boundary eigenvalue problem $$-(|u'|^{p-2}u')'=\lambda m|u|^{p-2}u\qquad u \in I=]a,b[,\quad u(a)=u(b)=0,$$ where $p>1$, $\lambda$ is a real parameter, $m$ is an indefinite weight, and $a$, $b$ are real numbers. We prove there exists a unique sequence of eigenvalues for this problem. Each eigenvalue is simple and verifies the strict monotonicity property with respect to the weight $m$ and the domain $I$, the k-th eigenfunction, corresponding to the $k$-th eigenvalue, has exactly $k-1$ zeros in $(a,b)$. At the end, we give a simple variational formulation of eigenvalues.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=143
collection DOAJ
language English
format Article
sources DOAJ
author Mohammed Moussa
A. Anane
Omar Chakrone
spellingShingle Mohammed Moussa
A. Anane
Omar Chakrone
Spectrum of one dimensional p-Laplacian operator with indefinite weight
Electronic Journal of Qualitative Theory of Differential Equations
author_facet Mohammed Moussa
A. Anane
Omar Chakrone
author_sort Mohammed Moussa
title Spectrum of one dimensional p-Laplacian operator with indefinite weight
title_short Spectrum of one dimensional p-Laplacian operator with indefinite weight
title_full Spectrum of one dimensional p-Laplacian operator with indefinite weight
title_fullStr Spectrum of one dimensional p-Laplacian operator with indefinite weight
title_full_unstemmed Spectrum of one dimensional p-Laplacian operator with indefinite weight
title_sort spectrum of one dimensional p-laplacian operator with indefinite weight
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2002-01-01
description This paper is concerned with the nonlinear boundary eigenvalue problem $$-(|u'|^{p-2}u')'=\lambda m|u|^{p-2}u\qquad u \in I=]a,b[,\quad u(a)=u(b)=0,$$ where $p>1$, $\lambda$ is a real parameter, $m$ is an indefinite weight, and $a$, $b$ are real numbers. We prove there exists a unique sequence of eigenvalues for this problem. Each eigenvalue is simple and verifies the strict monotonicity property with respect to the weight $m$ and the domain $I$, the k-th eigenfunction, corresponding to the $k$-th eigenvalue, has exactly $k-1$ zeros in $(a,b)$. At the end, we give a simple variational formulation of eigenvalues.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=143
work_keys_str_mv AT mohammedmoussa spectrumofonedimensionalplaplacianoperatorwithindefiniteweight
AT aanane spectrumofonedimensionalplaplacianoperatorwithindefiniteweight
AT omarchakrone spectrumofonedimensionalplaplacianoperatorwithindefiniteweight
_version_ 1721303976407728128