Efficient High-Dimensional Kernel k-Means++ with Random Projection

Using random projection, a method to speed up both kernel k-means and centroid initialization with k-means++ is proposed. We approximate the kernel matrix and distances in a lower-dimensional space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inli...

Full description

Bibliographic Details
Main Authors: Jan Y. K. Chan, Alex Po Leung, Yunbo Xie
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/15/6963
Description
Summary:Using random projection, a method to speed up both kernel k-means and centroid initialization with k-means++ is proposed. We approximate the kernel matrix and distances in a lower-dimensional space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></semantics></math></inline-formula> before the kernel k-means clustering motivated by upper error bounds. With random projections, previous work on bounds for dot products and an improved bound for kernel methods are considered for kernel k-means. The complexities for both kernel k-means with Lloyd’s algorithm and centroid initialization with k-means++ are known to be <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mi>n</mi><mi>k</mi><mi>D</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Θ</mi><mo>(</mo><mi>n</mi><mi>k</mi><mi>D</mi><mo>)</mo></mrow></semantics></math></inline-formula>, respectively, with <i>n</i> being the number of data points, the dimensionality of input feature vectors <i>D</i> and the number of clusters <i>k</i>. The proposed method reduces the computational complexity for the kernel computation of kernel k-means from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>n</mi><mn>2</mn></msup><mi>D</mi><mo>)</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>n</mi><mn>2</mn></msup><mi>d</mi><mo>)</mo></mrow></semantics></math></inline-formula> and the subsequent computation for k-means with Lloyd’s algorithm and centroid initialization from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mi>n</mi><mi>k</mi><mi>D</mi><mo>)</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mi>n</mi><mi>k</mi><mi>d</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Our experiments demonstrate that the speed-up of the clustering method with reduced dimensionality <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>=</mo><mn>200</mn></mrow></semantics></math></inline-formula> is 2 to 26 times with very little performance degradation (less than one percent) in general.
ISSN:2076-3417