Multi-parameter second-order impulsive indefinite boundary value problems

Abstract We consider the solvable intervals of three positive parameters λi $\lambda _{i}$ ( i=1,2,3 $i=1,2,3$) in which the second-order impulsive boundary value problem {−x″=a(t)xy+λ1g(t)f(x),0<t<1,t≠tk,−y″=λ2b(t)x,0<t<1,Δx|t=tk=λ3Ik(x(tk)),k=1,2,…,n,x(0)=0,x′(1)=0,y(0)=y(1)=0 $$\texts...

Full description

Bibliographic Details
Main Authors: Lishuai Jiao, Xuemei Zhang
Format: Article
Language:English
Published: SpringerOpen 2018-05-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-018-1618-7
id doaj-cdb07e908bc7480c814b581bf9c0b869
record_format Article
spelling doaj-cdb07e908bc7480c814b581bf9c0b8692020-11-25T00:41:05ZengSpringerOpenAdvances in Difference Equations1687-18472018-05-012018112410.1186/s13662-018-1618-7Multi-parameter second-order impulsive indefinite boundary value problemsLishuai Jiao0Xuemei Zhang1Department of Mathematics and Physics, North China Electric Power UniversityDepartment of Mathematics and Physics, North China Electric Power UniversityAbstract We consider the solvable intervals of three positive parameters λi $\lambda _{i}$ ( i=1,2,3 $i=1,2,3$) in which the second-order impulsive boundary value problem {−x″=a(t)xy+λ1g(t)f(x),0<t<1,t≠tk,−y″=λ2b(t)x,0<t<1,Δx|t=tk=λ3Ik(x(tk)),k=1,2,…,n,x(0)=0,x′(1)=0,y(0)=y(1)=0 $$\textstyle\begin{cases} -x''=a(t)xy+\lambda_{1}g(t)f(x),& 0< t< 1, t\neq t_{k},\\ -y''=\lambda_{2}b(t)x,& 0< t< 1,\\ \Delta x|_{t=t_{k}}=\lambda_{3}I_{k}(x(t_{k})),& k=1,2,\dots,n,\\ x(0)=0,\qquad x'(1)=0,\\ y(0)=y(1)=0 \end{cases} $$ admits at least two positive solutions. The main interest is that the weight functions a(t) $a(t)$, b(t) $b(t)$, and g(t) $g(t)$ change sign on [0,1] $[0,1]$, λi $\lambda_{i}$ (i=1,2,3)≢1 $(i=1,2,3)\not\equiv1$, and Ik≠0 $I_{k}\neq0$ ( k=1,2,…,n $k=1,2,\ldots,n$). We will obtain several interesting results: there exist positive constants λ∗ $\lambda^{*}$, λ∗ $\lambda_{*}$, λi∗ $\lambda_{i}^{*}$ ( i=1,3 $i=1,3$), λi∗∗ $\lambda_{i}^{**}$ ( i=1,2,3 $i=1,2,3$) and α with α≠1 $\alpha\neq1$ such that: (i) if α>1 $\alpha>1$, then for λi∈[λi∗,+∞) $\lambda_{i}\in[\lambda _{i}^{*},+\infty)$ ( i=1,3 $i=1,3$) and λ2∈[λ∗,λ∗] $\lambda_{2}\in[\lambda_{*}, \lambda^{*} ]$, the above boundary value problem admits at least two positive solutions; (ii) if 0<α<1 $0<\alpha<1$, then for λi∈(0,λi∗∗] $\lambda_{i}\in(0,\lambda_{i}^{**}]$ ( i=1,2,3 $i=1,2,3$), the above boundary value problem admits at least two positive solutions.http://link.springer.com/article/10.1186/s13662-018-1618-7Solvable intervals of three parametersPositive solutionsIndefinite impulsive boundary value problemFixed point technique
collection DOAJ
language English
format Article
sources DOAJ
author Lishuai Jiao
Xuemei Zhang
spellingShingle Lishuai Jiao
Xuemei Zhang
Multi-parameter second-order impulsive indefinite boundary value problems
Advances in Difference Equations
Solvable intervals of three parameters
Positive solutions
Indefinite impulsive boundary value problem
Fixed point technique
author_facet Lishuai Jiao
Xuemei Zhang
author_sort Lishuai Jiao
title Multi-parameter second-order impulsive indefinite boundary value problems
title_short Multi-parameter second-order impulsive indefinite boundary value problems
title_full Multi-parameter second-order impulsive indefinite boundary value problems
title_fullStr Multi-parameter second-order impulsive indefinite boundary value problems
title_full_unstemmed Multi-parameter second-order impulsive indefinite boundary value problems
title_sort multi-parameter second-order impulsive indefinite boundary value problems
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1847
publishDate 2018-05-01
description Abstract We consider the solvable intervals of three positive parameters λi $\lambda _{i}$ ( i=1,2,3 $i=1,2,3$) in which the second-order impulsive boundary value problem {−x″=a(t)xy+λ1g(t)f(x),0<t<1,t≠tk,−y″=λ2b(t)x,0<t<1,Δx|t=tk=λ3Ik(x(tk)),k=1,2,…,n,x(0)=0,x′(1)=0,y(0)=y(1)=0 $$\textstyle\begin{cases} -x''=a(t)xy+\lambda_{1}g(t)f(x),& 0< t< 1, t\neq t_{k},\\ -y''=\lambda_{2}b(t)x,& 0< t< 1,\\ \Delta x|_{t=t_{k}}=\lambda_{3}I_{k}(x(t_{k})),& k=1,2,\dots,n,\\ x(0)=0,\qquad x'(1)=0,\\ y(0)=y(1)=0 \end{cases} $$ admits at least two positive solutions. The main interest is that the weight functions a(t) $a(t)$, b(t) $b(t)$, and g(t) $g(t)$ change sign on [0,1] $[0,1]$, λi $\lambda_{i}$ (i=1,2,3)≢1 $(i=1,2,3)\not\equiv1$, and Ik≠0 $I_{k}\neq0$ ( k=1,2,…,n $k=1,2,\ldots,n$). We will obtain several interesting results: there exist positive constants λ∗ $\lambda^{*}$, λ∗ $\lambda_{*}$, λi∗ $\lambda_{i}^{*}$ ( i=1,3 $i=1,3$), λi∗∗ $\lambda_{i}^{**}$ ( i=1,2,3 $i=1,2,3$) and α with α≠1 $\alpha\neq1$ such that: (i) if α>1 $\alpha>1$, then for λi∈[λi∗,+∞) $\lambda_{i}\in[\lambda _{i}^{*},+\infty)$ ( i=1,3 $i=1,3$) and λ2∈[λ∗,λ∗] $\lambda_{2}\in[\lambda_{*}, \lambda^{*} ]$, the above boundary value problem admits at least two positive solutions; (ii) if 0<α<1 $0<\alpha<1$, then for λi∈(0,λi∗∗] $\lambda_{i}\in(0,\lambda_{i}^{**}]$ ( i=1,2,3 $i=1,2,3$), the above boundary value problem admits at least two positive solutions.
topic Solvable intervals of three parameters
Positive solutions
Indefinite impulsive boundary value problem
Fixed point technique
url http://link.springer.com/article/10.1186/s13662-018-1618-7
work_keys_str_mv AT lishuaijiao multiparametersecondorderimpulsiveindefiniteboundaryvalueproblems
AT xuemeizhang multiparametersecondorderimpulsiveindefiniteboundaryvalueproblems
_version_ 1725287258974584832