Multi-parameter second-order impulsive indefinite boundary value problems
Abstract We consider the solvable intervals of three positive parameters λi $\lambda _{i}$ ( i=1,2,3 $i=1,2,3$) in which the second-order impulsive boundary value problem {−x″=a(t)xy+λ1g(t)f(x),0<t<1,t≠tk,−y″=λ2b(t)x,0<t<1,Δx|t=tk=λ3Ik(x(tk)),k=1,2,…,n,x(0)=0,x′(1)=0,y(0)=y(1)=0 $$\texts...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-05-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13662-018-1618-7 |
id |
doaj-cdb07e908bc7480c814b581bf9c0b869 |
---|---|
record_format |
Article |
spelling |
doaj-cdb07e908bc7480c814b581bf9c0b8692020-11-25T00:41:05ZengSpringerOpenAdvances in Difference Equations1687-18472018-05-012018112410.1186/s13662-018-1618-7Multi-parameter second-order impulsive indefinite boundary value problemsLishuai Jiao0Xuemei Zhang1Department of Mathematics and Physics, North China Electric Power UniversityDepartment of Mathematics and Physics, North China Electric Power UniversityAbstract We consider the solvable intervals of three positive parameters λi $\lambda _{i}$ ( i=1,2,3 $i=1,2,3$) in which the second-order impulsive boundary value problem {−x″=a(t)xy+λ1g(t)f(x),0<t<1,t≠tk,−y″=λ2b(t)x,0<t<1,Δx|t=tk=λ3Ik(x(tk)),k=1,2,…,n,x(0)=0,x′(1)=0,y(0)=y(1)=0 $$\textstyle\begin{cases} -x''=a(t)xy+\lambda_{1}g(t)f(x),& 0< t< 1, t\neq t_{k},\\ -y''=\lambda_{2}b(t)x,& 0< t< 1,\\ \Delta x|_{t=t_{k}}=\lambda_{3}I_{k}(x(t_{k})),& k=1,2,\dots,n,\\ x(0)=0,\qquad x'(1)=0,\\ y(0)=y(1)=0 \end{cases} $$ admits at least two positive solutions. The main interest is that the weight functions a(t) $a(t)$, b(t) $b(t)$, and g(t) $g(t)$ change sign on [0,1] $[0,1]$, λi $\lambda_{i}$ (i=1,2,3)≢1 $(i=1,2,3)\not\equiv1$, and Ik≠0 $I_{k}\neq0$ ( k=1,2,…,n $k=1,2,\ldots,n$). We will obtain several interesting results: there exist positive constants λ∗ $\lambda^{*}$, λ∗ $\lambda_{*}$, λi∗ $\lambda_{i}^{*}$ ( i=1,3 $i=1,3$), λi∗∗ $\lambda_{i}^{**}$ ( i=1,2,3 $i=1,2,3$) and α with α≠1 $\alpha\neq1$ such that: (i) if α>1 $\alpha>1$, then for λi∈[λi∗,+∞) $\lambda_{i}\in[\lambda _{i}^{*},+\infty)$ ( i=1,3 $i=1,3$) and λ2∈[λ∗,λ∗] $\lambda_{2}\in[\lambda_{*}, \lambda^{*} ]$, the above boundary value problem admits at least two positive solutions; (ii) if 0<α<1 $0<\alpha<1$, then for λi∈(0,λi∗∗] $\lambda_{i}\in(0,\lambda_{i}^{**}]$ ( i=1,2,3 $i=1,2,3$), the above boundary value problem admits at least two positive solutions.http://link.springer.com/article/10.1186/s13662-018-1618-7Solvable intervals of three parametersPositive solutionsIndefinite impulsive boundary value problemFixed point technique |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lishuai Jiao Xuemei Zhang |
spellingShingle |
Lishuai Jiao Xuemei Zhang Multi-parameter second-order impulsive indefinite boundary value problems Advances in Difference Equations Solvable intervals of three parameters Positive solutions Indefinite impulsive boundary value problem Fixed point technique |
author_facet |
Lishuai Jiao Xuemei Zhang |
author_sort |
Lishuai Jiao |
title |
Multi-parameter second-order impulsive indefinite boundary value problems |
title_short |
Multi-parameter second-order impulsive indefinite boundary value problems |
title_full |
Multi-parameter second-order impulsive indefinite boundary value problems |
title_fullStr |
Multi-parameter second-order impulsive indefinite boundary value problems |
title_full_unstemmed |
Multi-parameter second-order impulsive indefinite boundary value problems |
title_sort |
multi-parameter second-order impulsive indefinite boundary value problems |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1847 |
publishDate |
2018-05-01 |
description |
Abstract We consider the solvable intervals of three positive parameters λi $\lambda _{i}$ ( i=1,2,3 $i=1,2,3$) in which the second-order impulsive boundary value problem {−x″=a(t)xy+λ1g(t)f(x),0<t<1,t≠tk,−y″=λ2b(t)x,0<t<1,Δx|t=tk=λ3Ik(x(tk)),k=1,2,…,n,x(0)=0,x′(1)=0,y(0)=y(1)=0 $$\textstyle\begin{cases} -x''=a(t)xy+\lambda_{1}g(t)f(x),& 0< t< 1, t\neq t_{k},\\ -y''=\lambda_{2}b(t)x,& 0< t< 1,\\ \Delta x|_{t=t_{k}}=\lambda_{3}I_{k}(x(t_{k})),& k=1,2,\dots,n,\\ x(0)=0,\qquad x'(1)=0,\\ y(0)=y(1)=0 \end{cases} $$ admits at least two positive solutions. The main interest is that the weight functions a(t) $a(t)$, b(t) $b(t)$, and g(t) $g(t)$ change sign on [0,1] $[0,1]$, λi $\lambda_{i}$ (i=1,2,3)≢1 $(i=1,2,3)\not\equiv1$, and Ik≠0 $I_{k}\neq0$ ( k=1,2,…,n $k=1,2,\ldots,n$). We will obtain several interesting results: there exist positive constants λ∗ $\lambda^{*}$, λ∗ $\lambda_{*}$, λi∗ $\lambda_{i}^{*}$ ( i=1,3 $i=1,3$), λi∗∗ $\lambda_{i}^{**}$ ( i=1,2,3 $i=1,2,3$) and α with α≠1 $\alpha\neq1$ such that: (i) if α>1 $\alpha>1$, then for λi∈[λi∗,+∞) $\lambda_{i}\in[\lambda _{i}^{*},+\infty)$ ( i=1,3 $i=1,3$) and λ2∈[λ∗,λ∗] $\lambda_{2}\in[\lambda_{*}, \lambda^{*} ]$, the above boundary value problem admits at least two positive solutions; (ii) if 0<α<1 $0<\alpha<1$, then for λi∈(0,λi∗∗] $\lambda_{i}\in(0,\lambda_{i}^{**}]$ ( i=1,2,3 $i=1,2,3$), the above boundary value problem admits at least two positive solutions. |
topic |
Solvable intervals of three parameters Positive solutions Indefinite impulsive boundary value problem Fixed point technique |
url |
http://link.springer.com/article/10.1186/s13662-018-1618-7 |
work_keys_str_mv |
AT lishuaijiao multiparametersecondorderimpulsiveindefiniteboundaryvalueproblems AT xuemeizhang multiparametersecondorderimpulsiveindefiniteboundaryvalueproblems |
_version_ |
1725287258974584832 |