Gentamicin Released from Porous Scaffolds Fabricated by Stereolithography

Porous oligolactide-hydroxyapatite composite scaffolds were obtained by stereolithographic fabrication. Gentamicin was then coated on the scaffolds afterwards, to achieve antimicrobial delivery ability to treat bone infection. The scaffolds examined by stereomicroscope, SEM, and μCT-scan showed a we...

Full description

Bibliographic Details
Main Authors: Somruethai Channasanon, Pareeya Udomkusonsri, Surapol Chantaweroad, Passakorn Tesavibul, Siriporn Tanodekaew
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Journal of Healthcare Engineering
Online Access:http://dx.doi.org/10.1155/2017/9547896
Description
Summary:Porous oligolactide-hydroxyapatite composite scaffolds were obtained by stereolithographic fabrication. Gentamicin was then coated on the scaffolds afterwards, to achieve antimicrobial delivery ability to treat bone infection. The scaffolds examined by stereomicroscope, SEM, and μCT-scan showed a well-ordered pore structure with uniform pore distribution and pore interconnectivity. The physical and mechanical properties of the scaffolds were investigated. It was shown that not only porosity but also scaffold structure played a critical role in governing the strength of scaffolds. A good scaffold design could create proper orientation of pores in a way to strengthen the scaffold structure. The drug delivery profile of the porous scaffolds was also analyzed using microbiological assay. The release rates of gentamicin from the scaffolds showed prolonged drug release at the levels higher than the minimum inhibitory concentrations for S. aureus and E. coli over a 2-week period. It indicated a potential of the scaffolds to serve as local antibiotic delivery to prevent bacterial infection.
ISSN:2040-2295
2040-2309