Heteroclinic Solutions for Classical and Singular <i>ϕ</i>-Laplacian Non-Autonomous Differential Equations

In this paper, we consider the second order discontinuous differential equation in the real line, <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mfenced separators="" open="(" close=")"> <mi>a</...

Full description

Bibliographic Details
Main Author: Feliz Minhós
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/8/1/22
Description
Summary:In this paper, we consider the second order discontinuous differential equation in the real line, <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mfenced separators="" open="(" close=")"> <mi>a</mi> <mfenced separators="" open="(" close=")"> <mi>t</mi> <mo>,</mo> <mi>u</mi> </mfenced> <mspace width="4.pt"></mspace> <mi>ϕ</mi> <mfenced separators="" open="(" close=")"> <msup> <mi>u</mi> <mo>&#8242;</mo> </msup> </mfenced> </mfenced> <mo>&#8242;</mo> </msup> <mo>=</mo> <mi>f</mi> <mfenced separators="" open="(" close=")"> <mi>t</mi> <mo>,</mo> <mi>u</mi> <mo>,</mo> <msup> <mi>u</mi> <mo>&#8242;</mo> </msup> </mfenced> <mo>,</mo> <mspace width="4.pt"></mspace> <mi>a</mi> <mo>.</mo> <mi>e</mi> <mo>.</mo> <mi>t</mi> <mo>&#8712;</mo> <mi mathvariant="double-struck">R</mi> <mo>,</mo> <mi>u</mi> <mrow> <mo>(</mo> <mo>&#8722;</mo> <mo>&#8734;</mo> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>&#957;</mi> <mo>&#8722;</mo> </msup> <mo>,</mo> <mspace width="4.pt"></mspace> <mspace width="4.pt"></mspace> <mi>u</mi> <mrow> <mo>(</mo> <mo>+</mo> <mo>&#8734;</mo> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>&#957;</mi> <mo>+</mo> </msup> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> with <inline-formula> <math display="inline"> <semantics> <mi>ϕ</mi> </semantics> </math> </inline-formula> an increasing homeomorphism such that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi mathvariant="double-struck">R</mi> <mo>)</mo> <mo>=</mo> <mi mathvariant="double-struck">R</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>&#8712;</mo> <mi>C</mi> <mo>(</mo> <msup> <mi mathvariant="double-struck">R</mi> <mn>2</mn> </msup> <mo>,</mo> <mi mathvariant="double-struck">R</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>)</mo> <mo>&gt;</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&#8712;</mo> <msup> <mi mathvariant="double-struck">R</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>:</mo> <msup> <mi mathvariant="double-struck">R</mi> <mn>3</mn> </msup> <mo>&#8594;</mo> <mi mathvariant="double-struck">R</mi> </mrow> </semantics> </math> </inline-formula> a <inline-formula> <math display="inline"> <semantics> <msup> <mi>L</mi> <mn>1</mn> </msup> </semantics> </math> </inline-formula>-Carath&#233;odory function and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>&#957;</mi> <mo>&#8722;</mo> </msup> <mo>,</mo> <msup> <mi>&#957;</mi> <mo>+</mo> </msup> <mo>&#8712;</mo> <mi mathvariant="double-struck">R</mi> </mrow> </semantics> </math> </inline-formula> such that <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>&#957;</mi> <mo>&#8722;</mo> </msup> <mo>&lt;</mo> <msup> <mi>&#957;</mi> <mo>+</mo> </msup> </mrow> </semantics> </math> </inline-formula>. The existence and localization of heteroclinic connections is obtained assuming a Nagumo-type condition on the real line and without asymptotic conditions on the nonlinearities <inline-formula> <math display="inline"> <semantics> <mi>ϕ</mi> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> </mrow> </semantics> </math> </inline-formula>. To the best of our knowledge, this result is even new when <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>y</mi> <mo>)</mo> <mo>=</mo> <mi>y</mi> </mrow> </semantics> </math> </inline-formula>, that is for equation <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mfenced separators="" open="(" close=")"> <mi>a</mi> <mfenced separators="" open="(" close=")"> <mi>t</mi> <mo>,</mo> <mi>u</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mfenced> <msup> <mi>u</mi> <mo>&#8242;</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mfenced> <mo>&#8242;</mo> </msup> <mo>=</mo> <mi>f</mi> <mfenced separators="" open="(" close=")"> <mi>t</mi> <mo>,</mo> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <msup> <mi>u</mi> <mo>&#8242;</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mfenced> <mo>,</mo> <mspace width="4.pt"></mspace> <mi>a</mi> <mo>.</mo> <mi>e</mi> <mo>.</mo> <mi>t</mi> <mo>&#8712;</mo> <mi mathvariant="double-struck">R</mi> </mrow> </semantics> </math> </inline-formula>. Moreover, these results can be applied to classical and singular <inline-formula> <math display="inline"> <semantics> <mi>ϕ</mi> </semantics> </math> </inline-formula>-Laplacian equations and to the mean curvature operator.
ISSN:2075-1680