The Machine Learning landscape of top taggers
Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly differ...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SciPost
2019-07-01
|
Series: | SciPost Physics |
Online Access: | https://scipost.org/SciPostPhys.7.1.014 |
id |
doaj-cd64bb30bc944dba8a7d8812048de39c |
---|---|
record_format |
Article |
spelling |
doaj-cd64bb30bc944dba8a7d8812048de39c2020-11-25T01:52:00ZengSciPostSciPost Physics2542-46532019-07-017101410.21468/SciPostPhys.7.1.014The Machine Learning landscape of top taggersGregor Kasieczka, Tilman Plehn, Anja Butter, Kyle Cranmer, Dipsikha Debnath, Barry M. Dillon, Malcolm Fairbairn, Darius A. Faroughy, Wojtek Fedorko, Christophe Gay, Loukas Gouskos, Jernej F. Kamenik, Patrick T. Komiske, Simon Leiss, Alison Lister, Sebastian Macaluso, Eric M. Metodiev, Liam Moore, Ben Nachman, Karl Nordström, Jannicke Pearkes, Huilin Qu, Yannik Rath, Marcel Rieger, David Shih, Jennifer M. Thompson, Sreedevi VarmaBased on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.https://scipost.org/SciPostPhys.7.1.014 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gregor Kasieczka, Tilman Plehn, Anja Butter, Kyle Cranmer, Dipsikha Debnath, Barry M. Dillon, Malcolm Fairbairn, Darius A. Faroughy, Wojtek Fedorko, Christophe Gay, Loukas Gouskos, Jernej F. Kamenik, Patrick T. Komiske, Simon Leiss, Alison Lister, Sebastian Macaluso, Eric M. Metodiev, Liam Moore, Ben Nachman, Karl Nordström, Jannicke Pearkes, Huilin Qu, Yannik Rath, Marcel Rieger, David Shih, Jennifer M. Thompson, Sreedevi Varma |
spellingShingle |
Gregor Kasieczka, Tilman Plehn, Anja Butter, Kyle Cranmer, Dipsikha Debnath, Barry M. Dillon, Malcolm Fairbairn, Darius A. Faroughy, Wojtek Fedorko, Christophe Gay, Loukas Gouskos, Jernej F. Kamenik, Patrick T. Komiske, Simon Leiss, Alison Lister, Sebastian Macaluso, Eric M. Metodiev, Liam Moore, Ben Nachman, Karl Nordström, Jannicke Pearkes, Huilin Qu, Yannik Rath, Marcel Rieger, David Shih, Jennifer M. Thompson, Sreedevi Varma The Machine Learning landscape of top taggers SciPost Physics |
author_facet |
Gregor Kasieczka, Tilman Plehn, Anja Butter, Kyle Cranmer, Dipsikha Debnath, Barry M. Dillon, Malcolm Fairbairn, Darius A. Faroughy, Wojtek Fedorko, Christophe Gay, Loukas Gouskos, Jernej F. Kamenik, Patrick T. Komiske, Simon Leiss, Alison Lister, Sebastian Macaluso, Eric M. Metodiev, Liam Moore, Ben Nachman, Karl Nordström, Jannicke Pearkes, Huilin Qu, Yannik Rath, Marcel Rieger, David Shih, Jennifer M. Thompson, Sreedevi Varma |
author_sort |
Gregor Kasieczka, Tilman Plehn, Anja Butter, Kyle Cranmer, Dipsikha Debnath, Barry M. Dillon, Malcolm Fairbairn, Darius A. Faroughy, Wojtek Fedorko, Christophe Gay, Loukas Gouskos, Jernej F. Kamenik, Patrick T. Komiske, Simon Leiss, Alison Lister, Sebastian Macaluso, Eric M. Metodiev, Liam Moore, Ben Nachman, Karl Nordström, Jannicke Pearkes, Huilin Qu, Yannik Rath, Marcel Rieger, David Shih, Jennifer M. Thompson, Sreedevi Varma |
title |
The Machine Learning landscape of top taggers |
title_short |
The Machine Learning landscape of top taggers |
title_full |
The Machine Learning landscape of top taggers |
title_fullStr |
The Machine Learning landscape of top taggers |
title_full_unstemmed |
The Machine Learning landscape of top taggers |
title_sort |
machine learning landscape of top taggers |
publisher |
SciPost |
series |
SciPost Physics |
issn |
2542-4653 |
publishDate |
2019-07-01 |
description |
Based on the established task of identifying boosted, hadronically decaying
top quarks, we compare a wide range of modern machine learning approaches.
Unlike most established methods they rely on low-level input, for instance
calorimeter output. While their network architectures are vastly different,
their performance is comparatively similar. In general, we find that these new
approaches are extremely powerful and great fun. |
url |
https://scipost.org/SciPostPhys.7.1.014 |
work_keys_str_mv |
AT gregorkasieczkatilmanplehnanjabutterkylecranmerdipsikhadebnathbarrymdillonmalcolmfairbairndariusafaroughywojtekfedorkochristophegayloukasgouskosjernejfkamenikpatricktkomiskesimonleissalisonlistersebastianmacalusoericmmetodievliammoorebennachmankarlnordstr themachinelearninglandscapeoftoptaggers AT gregorkasieczkatilmanplehnanjabutterkylecranmerdipsikhadebnathbarrymdillonmalcolmfairbairndariusafaroughywojtekfedorkochristophegayloukasgouskosjernejfkamenikpatricktkomiskesimonleissalisonlistersebastianmacalusoericmmetodievliammoorebennachmankarlnordstr machinelearninglandscapeoftoptaggers |
_version_ |
1724995513363726336 |