The Machine Learning landscape of top taggers

Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly differ...

Full description

Bibliographic Details
Main Author: Gregor Kasieczka, Tilman Plehn, Anja Butter, Kyle Cranmer, Dipsikha Debnath, Barry M. Dillon, Malcolm Fairbairn, Darius A. Faroughy, Wojtek Fedorko, Christophe Gay, Loukas Gouskos, Jernej F. Kamenik, Patrick T. Komiske, Simon Leiss, Alison Lister, Sebastian Macaluso, Eric M. Metodiev, Liam Moore, Ben Nachman, Karl Nordström, Jannicke Pearkes, Huilin Qu, Yannik Rath, Marcel Rieger, David Shih, Jennifer M. Thompson, Sreedevi Varma
Format: Article
Language:English
Published: SciPost 2019-07-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.7.1.014
id doaj-cd64bb30bc944dba8a7d8812048de39c
record_format Article
spelling doaj-cd64bb30bc944dba8a7d8812048de39c2020-11-25T01:52:00ZengSciPostSciPost Physics2542-46532019-07-017101410.21468/SciPostPhys.7.1.014The Machine Learning landscape of top taggersGregor Kasieczka, Tilman Plehn, Anja Butter, Kyle Cranmer, Dipsikha Debnath, Barry M. Dillon, Malcolm Fairbairn, Darius A. Faroughy, Wojtek Fedorko, Christophe Gay, Loukas Gouskos, Jernej F. Kamenik, Patrick T. Komiske, Simon Leiss, Alison Lister, Sebastian Macaluso, Eric M. Metodiev, Liam Moore, Ben Nachman, Karl Nordström, Jannicke Pearkes, Huilin Qu, Yannik Rath, Marcel Rieger, David Shih, Jennifer M. Thompson, Sreedevi VarmaBased on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.https://scipost.org/SciPostPhys.7.1.014
collection DOAJ
language English
format Article
sources DOAJ
author Gregor Kasieczka, Tilman Plehn, Anja Butter, Kyle Cranmer, Dipsikha Debnath, Barry M. Dillon, Malcolm Fairbairn, Darius A. Faroughy, Wojtek Fedorko, Christophe Gay, Loukas Gouskos, Jernej F. Kamenik, Patrick T. Komiske, Simon Leiss, Alison Lister, Sebastian Macaluso, Eric M. Metodiev, Liam Moore, Ben Nachman, Karl Nordström, Jannicke Pearkes, Huilin Qu, Yannik Rath, Marcel Rieger, David Shih, Jennifer M. Thompson, Sreedevi Varma
spellingShingle Gregor Kasieczka, Tilman Plehn, Anja Butter, Kyle Cranmer, Dipsikha Debnath, Barry M. Dillon, Malcolm Fairbairn, Darius A. Faroughy, Wojtek Fedorko, Christophe Gay, Loukas Gouskos, Jernej F. Kamenik, Patrick T. Komiske, Simon Leiss, Alison Lister, Sebastian Macaluso, Eric M. Metodiev, Liam Moore, Ben Nachman, Karl Nordström, Jannicke Pearkes, Huilin Qu, Yannik Rath, Marcel Rieger, David Shih, Jennifer M. Thompson, Sreedevi Varma
The Machine Learning landscape of top taggers
SciPost Physics
author_facet Gregor Kasieczka, Tilman Plehn, Anja Butter, Kyle Cranmer, Dipsikha Debnath, Barry M. Dillon, Malcolm Fairbairn, Darius A. Faroughy, Wojtek Fedorko, Christophe Gay, Loukas Gouskos, Jernej F. Kamenik, Patrick T. Komiske, Simon Leiss, Alison Lister, Sebastian Macaluso, Eric M. Metodiev, Liam Moore, Ben Nachman, Karl Nordström, Jannicke Pearkes, Huilin Qu, Yannik Rath, Marcel Rieger, David Shih, Jennifer M. Thompson, Sreedevi Varma
author_sort Gregor Kasieczka, Tilman Plehn, Anja Butter, Kyle Cranmer, Dipsikha Debnath, Barry M. Dillon, Malcolm Fairbairn, Darius A. Faroughy, Wojtek Fedorko, Christophe Gay, Loukas Gouskos, Jernej F. Kamenik, Patrick T. Komiske, Simon Leiss, Alison Lister, Sebastian Macaluso, Eric M. Metodiev, Liam Moore, Ben Nachman, Karl Nordström, Jannicke Pearkes, Huilin Qu, Yannik Rath, Marcel Rieger, David Shih, Jennifer M. Thompson, Sreedevi Varma
title The Machine Learning landscape of top taggers
title_short The Machine Learning landscape of top taggers
title_full The Machine Learning landscape of top taggers
title_fullStr The Machine Learning landscape of top taggers
title_full_unstemmed The Machine Learning landscape of top taggers
title_sort machine learning landscape of top taggers
publisher SciPost
series SciPost Physics
issn 2542-4653
publishDate 2019-07-01
description Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.
url https://scipost.org/SciPostPhys.7.1.014
work_keys_str_mv AT gregorkasieczkatilmanplehnanjabutterkylecranmerdipsikhadebnathbarrymdillonmalcolmfairbairndariusafaroughywojtekfedorkochristophegayloukasgouskosjernejfkamenikpatricktkomiskesimonleissalisonlistersebastianmacalusoericmmetodievliammoorebennachmankarlnordstr themachinelearninglandscapeoftoptaggers
AT gregorkasieczkatilmanplehnanjabutterkylecranmerdipsikhadebnathbarrymdillonmalcolmfairbairndariusafaroughywojtekfedorkochristophegayloukasgouskosjernejfkamenikpatricktkomiskesimonleissalisonlistersebastianmacalusoericmmetodievliammoorebennachmankarlnordstr machinelearninglandscapeoftoptaggers
_version_ 1724995513363726336